Export 359 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Huang, R, Avo J, Northey T, Chaning-Pearce E, dos Santos PL, Ward JS, Data P, Etherington MK, Fox MA, Penfold TJ, Berberan-Santos MN, Lima JC, Bryce MR, Dias FB.  Submitted.  {The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters}, {JUL 7}. {JOURNAL OF MATERIALS CHEMISTRY C}. {5}:{6269-6280}., Number {25} Abstract
n/a
Zhao, Y, He L, Tang N, Qin S, Tao G-H, Liang F-X.  Submitted.  {Structures and Properties of Luminescent Pentanitratoeuropate(III) Ionic Liquids}, {JAN}. {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY}. :{542-551}., Number {3} Abstract
n/a
2025
Saif, HM, Ferrández-Gómez B, Alves VD, Huertas RM, Alemany-Molina G, Viegas A, Morallón E, Cazorla-Amorós D, Crespo JG, Pawlowski S.  2025.  Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis. Desalination. 602:118638. AbstractWebsite

Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area ( 2800 m2/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUAF) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.

2024
Henriques, JT, Carmo C, Marques A, Ferreira I, Baptista A.  2024.  Carbon threads supercapacitors for washable e-textile applications: configurations and electrochemical performance. ACS Applied Engineering Materials. 2:415-421.
Esmear, T, Twilley D, Thipe {VC}, Katti {KV }, Mandiwana V, Kalombo {ML}, Ray {SS}, Rikhotso-Mbungela R, Bovilla {VR}, Madhunapantula {SR}, Langhanshova L, Roma-Rodrigues C, Fernandes {AR}, Baptista P, Hlati S, Pretorius J, Lall N.  2024.  Anti-inflammatory and antiproliferative activity of Helichrysum odoratissimum sweet. Against lung cancer. South African Journal of Botany. 166:525–538.: Elsevier Abstract

Lung cancer remains the top killing cancer worldwide despite advances in treatment. Seven ethanolic plant extracts were selected and evaluated for their antiproliferative activity against the two main types of lung cancers: non-small cell (A549) and small cell lung cancer cells (SHP-77). An ethanolic extract of Helichrysum odoratissimum Sweet (HO) showed significant antiproliferative activity against lung cancer, with a fifty percent inhibitory concentration (IC50) of 83.43 ± 1.60 µg/mL (A549), 49.46 ± 0.48 µg/mL (SHP-77) and 50.71 ± 2.27 µg/mL, against normal lung epithelial cells (MRC-5), resulting in a selectivity index (SI) value of 0.61 on A549 cells and 1.03 on SHP-77 cells, which was compared to the positive drug control, actinomycin D where the SI values were found to be 2 and 0.25 against A549 and SHP-77 cells, respectively. Against murine macrophages (RAW 264.7) and hepatocytes (HepG2), the HO ethanolic extract showed IC50 values of 60.15 ± 1.98 µg/mL and 23.61 ± 1.06 µg/mL, respectively. Microscopy showed that the HO ethanolic extract induced apoptosis in the A549 and HepG2 cells at 50 µg/mL and 300 µg/mL, respectively. The HO ethanolic extract, furthermore, inhibited the pro-inflammatory enzymes, cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) with IC50 values of 7.94 ± 3.84 µg/mL and 2.08 ± 1.35 µg/mL, respectively, whereas the positive controls Ibuprofen (COX-2) and Zileuton (5-LOX) showed IC50 values of 0.85 ± 0.14 µg/mL and 0.06 ± 0.05 µg/mL, respectively. The activity of NAD(P)H quinone oxidoreductase-1 (NQO1), which is a direct target of nuclear factor erythroid-2-related factor-2 (NRF2), was significantly inhibited in the A549 cells by the HO ethanolic extract (at 125 µg/mL) when compared to the positive control, brusatol (at 500 nM). Using the ex ovo yolk sac membrane (YSM) assay, the HO ethanolic extract (at 18.5 µg/egg) showed a 31.65 ± 12.80% inhibition of blood vessel formation. This is the first report of the noteworthy antiproliferative activity of the HO ethanolic extract on lung cancer cells including its potential to target several enzymes associated with inflammation and therefore, should be considered for further analysis.

2022
https://aip.scitation.org/doi/full/10.1063/5.0098145.  2022.  Characterization and modeling of resistive switching phenomena in IGZO devices. AIP Advances. 12(8)
Siposova, K, Huntosova V, Garcarova I, Shlapa Y, Timashkov I, Belous A, Musatov A.  2022.  Dual-Functional Antioxidant and Anti-amyloid Cerium Oxide Nanoparticles Fabricated by Controlled Synthesis in Water-Alcohol Solutions. Biomedicines. 10(942)
Rajnak, M, Franko M, Paulovicova K, Karpets M, Parekh K, Upadhyay R, Kurimsky J, Dolnik B, Cimbala R, Havran P, Timko M, Kopcansky P.  2022.  Effect of ferrofluid magnetization on transformer temperature rise. Journal of Physics D: Applied Physics. 55(34)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241358/.  2022.  Emergent solution based IGZO memristor towards neuromorphic applications. Materials Chemistry C. 10(6)
Figueiredo, J, Henriques MX, Catalão MJ, Pinheiro S, Narciso AR, Mesquita F, Saraiva BM, Carido M, Cabanes D, Pinho MG, Filipe SR.  2022.  Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathogens. 18:e1010516.
https://doi.org/10.1002/aelm.202200642.  2022.  Flexible Active Crossbar Arrays Using Amorphous Oxide Semiconductor Technology toward Artificial Neural Networks Hardware. Advanced Electronic Materials. :2200642.
Haque, S, Alexandre M, Baretzky C, Rossi D, Rossi FD, Vicente AT, Brunetti F, Águas H, Ferreira RAS, Fortunato E, Maur MAD, Wurfel U, Martins R, Mendes MJ.  2022.  Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics. 9(7):2408–2421.
https://aip.scitation.org/doi/full/10.1063/5.0073056.  2022.  Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL material. (10):1.
2021
Lapão, LV, Peyroteo M, Maia M, Seixas J, Gregório J, Mira da Silva M, Heleno B, Correia JC.  2021.  Implementation of Digital Monitoring Services During the COVID-19 Pandemic for Patients With Chronic Diseases: Design Science Approach, 2021. JMIR. 23(8):e24181. AbstractWebsite

Background: The COVID-19 pandemic is straining health systems and disrupting the delivery of health care services, in particular, for older adults and people with chronic conditions, who are particularly vulnerable to COVID-19 infection. Objective: The aim of this project was to support primary health care provision with a digital health platform that will allow primary care physicians and nurses to remotely manage the care of patients with chronic diseases or COVID-19 infections. Methods: For the rapid design and implementation of a digital platform to support primary health care services, we followed the Design Science implementation framework: (1) problem identification and motivation, (2) definition of the objectives aligned with goal-oriented care, (3) artefact design and development based on Scrum, (4) solution demonstration, (5) evaluation, and (6) communication. Results: The digital platform was developed for the specific objectives of the project and successfully piloted in 3 primary health care centers in the Lisbon Health Region. Health professionals (n=53) were able to remotely manage their first patients safely and thoroughly, with high degrees of satisfaction. Conclusions: Although still in the first steps of implementation, its positive uptake, by both health care providers and patients, is a promising result. There were several limitations including the low number of participating health care units. Further research is planned to deploy the platform to many more primary health care centers and evaluate the impact on patient’s health related outcomes.

Henriques, JT.  2021.  1D Fiber-shaped supercapacitors. FCT NOVA.
Oliveira, RD, Mouquinho A, Centeno P, Alexandre M, Haque S, Martins R, Fortunato E, Águas H, Mendes MJ.  2021.  Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management. Nanomaterials. 11(7):1665.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202170047.  2021.  Cover image Advanced Material Journal.
Saif, HM, Huertas RM, Pawlowski S, Crespo JG, Velizarov S.  2021.  Development of highly selective composite polymeric membranes for Li+/ Mg2+ separation. Journal of Membrane Science. 620:118891.Website
Hovhannisyan, V, Siposova K, Musatov A, Chen S-J.  2021.  Development of Multifunctional Nanocomposites for Controlled Drug Delivery and Hyperthermia. Scientific Reports. 11(5528)
Rajnak, M, Dolnik B, Hodermarsky P, Paulovicova K, Cimbala R, Timko M, Kopcansky P.  2021.  Dynamic Magnetic Response of Ferrofluids under a Static Electric Field. Physics of Fluids. 33(082006)
Saraiva, BM, Krippahl L, Filipe SR, Henriques R, Pinho MG.  2021.  eHooke: a tool for automated image analysis of spherical bacteria based on cell cycle progression. Biological Imaging. 1:e3.
Schuster, CS, Crupi I, Halme J, Koç M, Mendes MJ, Peters IM, Yerci S.  2021.  Empowering Photovoltaics with Smart Light Management Technologies. Handbook of Climate Change Mitigation and Adaptation. :1-84., New York: Springer
Aggarwal, SD, Lloyd* AJ, Yerneni SS, Narciso AR, Shepherd J, Roper DI, Dowson C, Filipe* SR, Hiller* NL.  2021.  A Molecular Link between Cell Wall Biosynthesis, Translation Fidelity, and Stringent Response in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA. 118(14):e2018089118.
Mouquinho, A, Sanchez-Sobrado O, Haque S, Centeno P, Alexandre MF, Ribeiro G, Boane JLN, Mateus T, Menda UD, Águas H, Fortunato E, Martins R, Mendes MJ.  2021.  Photonic Strategies for Photovoltaics: New Advances Beyond Optics. Modern Environmental Science and Engineering. 7(7):642-652.
2020
Chagas, R, Gericke M, Ferreira RB, Heinze T, Ferreira LM.  2020.  Synthesis and characterization of dicarboxymethyl cellulose, MAR. CELLULOSE. 27:1965-1974., Number 4 Abstract
n/a
loading