Export 1645 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Faria, J, Dionísio B, Soares I, Baptista AC, Marques A, Gonçalves L, Bettencourt A, Baleizão C, Ferreira I.  2022.  Cellulose acetate fibres loaded with daptomycin for metal implant coatings. Carbohydrate Polymers. 276:118733.
Shlapa, Y, Solopan S, Sarnatskaya V, Siposova K, Garcarova I, Veltruska K, Timashkov I, Lykhova O, Kolesnik D, Musatov A, Nikolaev V, Belous A.  2022.  Cerium dioxide nanoparticles synthesized via precipitation at constant pH: Synthesis, physical-chemical and antioxidant properties. Colloids and Surfaces B: Biointerface. 220(112960 )
Moniz, AB, Candeias M, Boavida NFFG.  2022.  Changes in productivity and labour relations: artificial intelligence in the automotive sector in Portugal. Int. J. Automotive Technology and Management. :1-23.2022_ijatm-98457_tafpv.pdf
Moniz, AB, Candeias M, Boavida N.  2022.  Changes in productivity and labour relations: artificial intelligence in the automotive sector in Portugal. Int. J. Automotive Technology and Management. 22(2):222–244.Website
Candeias, M, Moniz AB, Boavida N.  2022.  Digital Transformation in the Automotive Sector in Portugal: Data Analysis of Industrial R&D Projects. Inclusive Futures for Eu- rope: Addressing the Digitalisation Challenges, Inclusive Futures for Europe. (Kirov, V., Malamin, B., Eds.).:57-72., Sofia: Marin Drinov Publishing House of BAS
Soares, Í, Faria J, Marques A, Ribeiro IAC, Baleizão C, Bettencourt A, Ferreira I, Baptista AC.  2022.  Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS omega. 7:23096-23106.
Soares, Í, Faria J, Marques A, Ribeiro I, Baleizão C, Bettencourt A, Ferreira I, Baptista A.  2022.  Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS Omega. 7(27):23096–23106.
I. Soares, Faria J, Marques AC, Ribeiro I, Baleizão C, Bettencourt A, Ferreira I, Baptista AC.  2022.  Drug delivery from PCL/Chitosan multilayer coatings for metallic implants,. ACS Omega . 7(27):23096.
Siposova, K, Huntosova V, Garcarova I, Shlapa Y, Timashkov I, Belous A, Musatov A.  2022.  Dual-Functional Antioxidant and Anti-amyloid Cerium Oxide Nanoparticles Fabricated by Controlled Synthesis in Water-Alcohol Solutions. Biomedicines. 10(942)
Karpets, M, Rajnak M, Petrenko VI, Gapon I, Avdeev M, Bulavin L, Timko M, Kopcansky P.  2022.  Electric field-induced assembly of magnetic nanoparticles from dielectric ferrofluids on planar interface. Journal of Molecular Liquids. 362(119773)
Nunes, MJ, Moura JJG, Noronha JP, Branco LC, Samhan-Arias A, Sousa JP, Rouco C, Cordas C.  2022.  Evaluation of Sweat Sampling Procedures for Human Stress Biomarkers Detection. Analytica. 3:178–194.
Messias, S, Paz V, Cruz H, Rangel CM, Branco LC, Machado RAS.  2022.  Imidazolium and picoline-based electrolytes for electrochemical reduction of CO2 at high pressure. Energy Advances. 1(5):277-286.
B.K., M, J.J.G. M.  2022.  Native Protein Template Assisted Synthesis of Non-Native Metal-Sulfur Clusters. BioChem. 2:182-197.
Haque, S, Alexandre M, Baretzky C, Rossi D, Rossi FD, Vicente AT, Brunetti F, Águas H, Ferreira RAS, Fortunato E, Maur MAD, Wurfel U, Martins R, Mendes MJ.  2022.  Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics. 9(7):2408–2421.
Ramos, A, Isufi B, Marreiros R, Bolesova M, Gajdsova K.  2022.  Rational Use of FPFRC in Slab-Connections Under Reversed Horizontal Cyclic Loading. Engineering Structures. Accepted for publication Abstract

Slab – column connections that are subjected to combined gravity and horizontal loading during an earthquake are prone to premature failure due to punching shear. Traditional solutions to avoid punching failure and to increase the displacement capacity of this type of connection include using stirrups and double-headed studs as shear reinforcement. The use of High-Performance Fiber Reinforced Concrete (HPFRC) in a small region of the slab around the column as a substitute for traditional solutions is investigated in this paper, because this material has the potential to reduce labor and material costs. To fulfill this objective, four slab specimens with a thickness of 150 mm were tested under combined gravity and reversed horizontal drifts. The results are discussed in detail. The experimental variables considered were the top flexural reinforcement ratio, the size of the HPFRC zone and the intensity of the gravity load. Previously published tests that serve as reference specimens are used to compare the results. The behavior of the specimens with HPFRC was substantially improved compared to the reference specimens in terms of drift capacity: from only 1.0% drift to above 5.5%, even though a very small quantity of HPFRC was used, extended up to only 1.5 times the effective depth of the slab from the face of the column. Specimens with HPFRC also behaved better when compared to specimens with High-Strength Concrete (HSC). Side effects of using HPFRC in the slab in the vicinity of the column include an increase of the unbalanced moment transfer capacity and lateral stiffness, as well as a reduction of the deflections of the slab.

Sarnatskaya, V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V.  2022.  Structure and Biological Activity of Particles Produced from Highly Activated Carbon Adsorbent. Heliyon. 8(3)
Pinto, F, Lourenço AF, Pedrosa JFS, Gonçalves L, Ventura C, Vital N, Bettencourt A, Fernandes SN, da Rosa RR, Godinho MH, Louro H, Ferreira PJT, Silva MJ.  2022.  Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials. 12, Number 9 AbstractWebsite

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

Morais, {TS }, Fernandes {AR}, Baptista {PV}, Gambino D.  2022.  Editorial: Rational drug design of metal complexes for cancer therapy. Frontiers in Chemistry. 10: Frontiers Media Abstract
n/a
Martins, {ICB }, Forte A, Diogo {HP }, Raposo {LR }, Baptista {PV}, Fernandes {AR}, Branco {LC }, Duarte T}{M.  2022.  A solvent‐free strategy to prepare amorphous salts of folic acid with enhanced solubility and cell permeability. Chemistry–Methods. 2, Number 6 Abstract

Eight new amorphous organic salts of folic acid (FA) were prepared by mechanochemistry. FA can prevent cardiovascular and neurological diseases. Mechanochemistry overcomes serious FA solubility issues avoiding the use of toxic solvents. Due to low FA solubility, therapeutic effects in supplements and drugs are not achieved. Current strategies to improve FA solubility include its derivatization by using complex synthetic procedures. Herein, a simple and green procedure, avoiding structural modifications, was designed using mechanochemistry. Biocompatible amine-derivative coformers were strategically combined with FA to obtain salts with good physicochemical properties. New 1 : 1 and 1 : 2 amorphous FA salts offer 10 to 10,000 times better aqueous solubility and 10 to 100 times better octanol-water partition coefficient values (Koctanol/water) than FA alone. Koctanol/water is considered as a surrogate of cell permeability. No toxic effects in normal human primary dermal fibroblasts were detected for the prepared FA salts. Our findings suggest that 1 : 2 FA salts of choline hydroxide and derivatives could be good candidates for future pharmaceutical/nutraceutical applications.

2021
Barrulas, RV, Zanatta M, Casimiro T, Corvo MC.  2021.  Advanced porous materials from poly(ionic liquid)s: Challenges, applications and opportunities, {MAY 1}. CHEMICAL ENGINEERING JOURNAL. 411:128528. AbstractWebsite

{Over the past few years porous materials have become a topic of intense research. Porous poly(ionic liquid)s combine the porous architecture with intrinsic ionic liquids properties. In all research areas, the quest for new and improved materials has targeted functional materials with enhanced specificity and efficiency towards the final application. The application of porous materials ranges from sensing, protein separation, solid-phase extraction, catalysis, to CO2 capture and reuse. Recently, the design, synthesis, and porosity control of poly (ionic liquid)s have been attempted through strategies that include classic polymerization techniques as well as molecular imprinting and aerogels production. This review aims at providing the recent advances on porous poly (ionic liquid)s, giving a critical perspective about the works in which key requirements for porosity induction are discussed. Several applications that rely on molecular interactions between the porous material and target compounds are presented, focusing mainly on CO2 capture and reuse, along with some challenges that the scientific community in this field need to be aware of.}

Cordeiro, R, Beira MJ, Cruz C, Figueirinhas JL, Corvo MC, Almeida PL, Rosatella AA, Afonso CAM, Daniel CI, Sebastiao PJ.  2021.  Tuning the H-1 NMR Paramagnetic Relaxation Enhancement and Local Order of {[}Aliquat](+)-Based Systems Mixed with DMSO, {JAN}. International Journal of Molecular Sciences. 22:706., Number {2} AbstractWebsite

{Understanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] and on mixtures of these with different concentrations of DMSO by means of H-1 NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] mixture. The addition of DMSO provides a way of tuning both the local order of these systems and the relaxation enhancement produced by the tetrachloroferrate anion. Very small DMSO volume concentrations (at least up to 1%) lead to enhanced paramagnetic relaxation without compromising the locally ordered domains. Larger DMSO concentrations gradually destroy these domains and reduce the effect of paramagnetic relaxation, while solvating the ions present in the mixtures. The paramagnetic relaxation was explained as a correlated combination of inner and outer-sphere mechanisms, in line with the size and structure differences between cation and anion. This study presents a robust method of characterizing paramagnetic ionic systems and obtaining a consistent analysis for a large set of samples having different co-solvent concentrations.}

Roma-Rodrigues, C, Raposo {LR }, Valente R, Fernandes {AR}, Baptista {PV}.  2021.  Combined cancer therapeutics—Tackling the complexity of the tumor microenvironment, sep. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 13, Number 5: John Wiley and Sons Inc. Abstract

Cancer treatment has yet to find a “silver bullet” capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Saracino, F, Brinco J, Gago D, Gomes da Silva M, Ferreira RB, Ricardo-da-Silva J, Chagas R, Ferreira LM.  2021.  DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction, OCT. MOLECULES. 26, Number 20 Abstract
n/a
Couceiro, J, Matos I, Mendes {JJ}, Baptista {PV}, Fernandes {AR}, Quintas A.  2021.  Inflammatory Factors, Genetic Variants and Predisposition for Preterm Birth, oct. Clinical Genetics. 100:357–367., Number 4: Wiley Abstract

Preterm birth is a major clinical and public health challenge, with a prevalence of 11% worldwide. It is the leading cause of death in children younger than five years old and represents 70% of neonatal deaths and 75% of neonatal morbidity. Despite the clinical and public health significance, this condition's aetiology is still unclear, and most of the cases are spontaneous. There are several known preterm birth risk factors, including inflammatory diseases and the genetic background, although the underlying molecular mechanisms are far from understood. The present review highlights the research advances on the association between inflammatory-related genes and the increased risk for preterm delivery. The most associated genetic variants are the TNFα rs1800629, the IL1α rs17561, and the IL1RN rs2234663. Moreover, many of the genes discussed in this review are also implicated in pathologies involving inflammatory or autoimmune systems, such as periodontal disease, bowel inflammatory disease, and autoimmune rheumatic diseases. This review presents evidence suggesting a common genetic background to preterm birth, autoimmune and inflammatory diseases susceptibility. This article is protected by copyright. All rights reserved.

Palion-Gazda, J, Luz A, Raposo {LR }, Choroba K, Nycz {JE }, Bieńko A, Lewińska A, Erfurt K, Baptista {PV}, Machura B, Fernandes {AR}, Shul’pina {LS }, Ikonnikov {NS }, Shul’pin {GB }.  2021.  Vanadium(IV) complexes with methyl-substituted 8-hydroxyquinolines: Catalytic potential in the oxidation of hydrocarbons and alcohols with peroxides and biological activity, oct. Molecules. 26, Number 21: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Methyl-substituted 8-hydroxyquinolines (Hquin) were successfully used to synthetize five-coordinated oxovanadium(IV) complexes: [VO(2,6-(Me)2-quin)2 ] (1), [VO(2,5-(Me)2-quin)2 ] (2) and [VO(2-Me-quin)2 ] (3). Complexes 1–3 demonstrated high catalytic activity in the oxidation of hydrocarbons with H2 O2 in acetonitrile at 50◦ C, in the presence of 2-pyrazinecarboxylic acid (PCA) as a cocatalyst. The maximum yield of cyclohexane oxidation products attained was 48%, which is high in the case of the oxidation of saturated hydrocarbons. The reaction leads to the formation of a mixture of cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone. When triphenylphosphine is added, cyclohexyl hydroperoxide is completely converted to cyclohexanol. Consideration of the regioand bond-selectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicates that the oxidation proceeds with the participation of free hydroxyl radicals. The complexes show moderate activity in the oxidation of alcohols. Complexes 1 and 2 reduce the viability of colorectal (HCT116) and ovarian (A2780) carcinoma cell lines and of normal dermal fibroblasts without showing a specific selectivity for cancer cell lines. Complex 3 on the other hand, shows a higher cytotoxicity in a colorectal carcinoma cell line (HCT116), a lower cytotoxicity towards normal dermal fibroblasts and no effect in an ovarian carcinoma cell line (order of magnitude HCT116 > fibroblasts > A2780).