Export 1645 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Bassani, DM, Cucinotta F, Bohne C, Basilio N, Lemon C, Allain C, Sundstrom V, Campagna S, Rohacova J, Ketteler Y, Ryan STJ, Vos J, de Silva AP, Slota M.  Submitted.  {Light activated molecular machines and logic gates: general discussion}. {FARADAY DISCUSSIONS}. {185}:{399-411}. Abstract
n/a
Tiago, GAO, Ribeiro APC, Mahmudov KT, Guedes da Silva FMC, Branco LC, Pombeiro AJL.  Submitted.  {Mononuclear copper(II) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium}. {RSC ADVANCES}. {6}:{83412-83420}., Number {86} Abstract
n/a
Santos, MM, Bastos P, Catela I, Zalewska K, Branco LC.  Submitted.  {Recent Advances of Metallocenes for Medicinal Chemistry}. {MINI-REVIEWS IN MEDICINAL CHEMISTRY}. {17}:{771-784}., Number {9} Abstract
n/a
Carrera, GVSM, Jordao N, Santos MM, da Ponte MN, Branco LC.  Submitted.  {Reversible systems based on CO2, amino-acids and organic superbases}. {RSC ADVANCES}. {5}:{35564-35571}., Number {45} Abstract
n/a
Pikramenou, Z, Weinstein J, Pan Q, Lewis F, Bassani DM, Wuerthner F, Moucheron C, Slota M, Diaz-Moscoso A, Karlsson J, Basilio N, Adams D, Scandola F, Bohne C, Lemon C, Campagna S, Rohacova J, Ohashi K, Ploetz P-A, Monti F, Kelly JM, Keane P, Gibson E, Lemercier G, Ruggi A, Cucinotta F, Gust D, Bradberry S, Vos J, Pistolis G, Mauro M, Tuite E, De Cola L, Ceroni P, Maneiro M, Galoppini E, Gunnlaugsson T.  Submitted.  {Self-organization of photo-active nanostructures: general discussion}. {FARADAY DISCUSSIONS}. {185}:{529-548}. Abstract
n/a
Diniz, AM, Basilio N, Cruz H, Pina F, Parola JA.  Submitted.  {Spatiotemporal control over the co-conformational switching in pH-responsive flavylium-based multistate pseudorotaxanes}. {FARADAY DISCUSSIONS}. {185}:{361-379}. Abstract
n/a
Jordao, N, Cruz H, Branco A, Pinheiro C, Pina F, Branco LC.  Submitted.  {Switchable electrochromic devices based on disubstituted bipyridinium derivatives}. {RSC ADVANCES}. {5}:{27867-27873}., Number {35} Abstract
n/a
Basilio, N, Garnier T, Avo J, Danel M, Chassaing S, Pina F.  Submitted.  {Synthesis and multistate characterization of bis-flavylium dications - symmetric resorcinol- and phloroglucinol-type derivatives as stochastic systems}. {RSC ADVANCES}. {6}:{69698-69707}., Number {74} Abstract
n/a
Aguilo, E, Gavara R, Baucells C, Guitart M, Lima JC, Llorca J, Rodriguez L.  Submitted.  {Tuning supramolecular aurophilic structures: the effect of counterion, positive charge and solvent}. {DALTON TRANSACTIONS}. {45}:{7328-7339}., Number {17} Abstract
n/a
Santos, L, Neto JP, Crespo A, Nunes D, Costa N, Fonseca IM, Barquinha P, Pereira L, Silva J, Martins R, Fortunato E.  Submitted.  {WO3 Nanoparticle-Based Conformable pH Sensor}. ACS APPLIED MATERIALS & INTERFACES. 6:12226–12234., Number 15 Abstract

\{pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 +/- 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.\}

2025
Duarte, M, Carvalho AL, Ferreira MC, Caires B, Romão MJ, Prates JAM, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2025.  Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins, 2025. 301(7):110325. AbstractWebsite

Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like R. flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbors one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca+2-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.

Mahmoodi, H, Basílio N, Branco PS, Lima JC, Pina F.  2025.  Calculation of the Absorption Spectra of Various Anthocyanin Species in an Acidic Medium Using Stopped-Flow Spectroscopy. J. Org. Chem.. (In press)
Leitão, F, Galrito D, Branco LC, Cruz H, Branco PS.  2025.  Electrochemical studies of Benzoquinone, Hydrobenzoquinone, Diphenoquinone, and Hydrodiphenoquinone-Based Compounds. Electrochem. Sci. Adv. :e70006.
Phillips, AF, Ferreira LM, Branco PS, Lourenço A.  2025.  The Synthesis of Terpenes Via Enantioselective Organocatalysis. Asian J. Org. Chem.. :e202500229.
Pereira, BA, Matos CT, Costa L, Ferreira LM, Crespo JG, Brazinha C.  2025.  Sustainable processing of microalgae protein: Design of biphasic partitioning systems based on natural deep eutectic solvents for C-phycocyanin recovery from model aqueous solutions. Separation and Purification Technology. 353:128510. AbstractWebsite

The development of sustainable protein sources is imperative for addressing the global challenge of food/feed security. Microalgae, which may be sustainably cultivated, are a promising source of proteins, gaining a progressive acceptance among consumers. The purpose of this work is to study the recovery of the protein C-phycocyanin from the microalga Arthrospira platensis (Spirulina), using a biphasic extraction system composed of sustainable solvents. The extraction system studied involves a feed phase, consisting of an aqueous salt solution and the target protein, and an extracting phase composed of a Natural Deep Eutectic Solvent (NADES) with affinity to the target protein. The performance of a specific NADES depends on the characteristics of the components of the NADES, in terms of its hydrophobicity/hydrophilicity balance, aiming the highest possible partitioning coefficient towards C-phycocyanin. It is also important to assure that the NADES phase selected presents a moderate viscosity and leads to a stable interface when in contact with the aqueous feed phase (i.e., presenting a measurable interfacial tension). In this work, after an extensive screening work of more than 71 combinations, the most overall performing combination is presented. This system shows a high partitioning coefficient of 29.4 ± 0.3 and an extraction yield of 99 % for C-phycocyanin (C-PC), demonstrating that the salting-out effect of the phosphate buffer and the hydrophobic character of NADES play a key role in this protein partitioning and recovery.

Royo, B, Lenis-Rojas {OA}, Roma C, Carvalho B, Andrade V, Friães S, Cabezas-Sain P, Fernández {JAA}, Vila {SF}, Arana {AJ}, Sanchez L, Baptista {PV}, Gomes {CSB}, Fernandes {AR}.  2025.  Triazole-Derived Ruthenium(II) Complexes as Novel Candidates for Cancer Therapy. ChemPlusChem. :e202400775.: Wiley | Wiley-VCH Verlag Abstract

The first examples of Ru(II) h6-arene (benzene and p-cymene) complexes containing a bidentate triazolylidene-triazolide ligand have been prepared and fully characterized. Their antiproliferative effect has been investigated against tumour cells A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116dox (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The Ru complex bearing the p-cymene arene group exhibited a stronger antiproliferative effect across all tested cell lines, while the benzene-containing complex displayed higher selectivity toward tumor cells. Both complexes induced apoptosis, likely through ROS production (in the benzene complex), and inhibited tumorigenic processes, including cell migration and angiogenesis. In zebrafish models, they showed strong selectivity for cancer cells with minimal toxicity to healthy cells, effectively reducing the proliferation of HCT116 colorectal cancer cells. This study provides the first in vivo evidence of the anticancer potential of Ru triazolylidenes in zebrafish models.

2024
Sarrato, J, Raimundo B, Domingues L, Filipe SR, Lima CJ, Branco PS.  2024.  Synthesis of inverse push-pull coumarin dyes and their application as solvatochromic probes and labelling agents for bacterial cell membranes, SEP. DYES AND PIGMENTS. 228 Abstract
n/a
Bravo, {AC}, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos {MP}, Maio R, Paulino J, {Viana Baptista} P, Fernandes {AR}, Cravo M.  2024.  Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma: A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples, oct. Cancers. 16, Number 20: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. Methods: Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS–HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. Results: A total of 88 patients, 93% with ECOG-PS 0–1, 57% with resectable disease. ARMS–HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061–3.02

Choroba, K, Zowislok B, Kula S, Machura B, Maron AM, Erfurt K, Cordeiro S, Baptista PV, Fernandes {AR}.  2024.  Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes, nov. Journal Of Medicinal Chemistry. 67:19475–19502., Number 21: ACS - American Chemical Society Abstract

Cu(II) complexes with 2,2′:6′,2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl2(Ln)]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes (Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).

Choroba, K, Zowiślok B, Kula S, Machura B, Maroń {AM }, Erfurt K, Marques C, Cordeiro S, Baptista {PV}, Fernandes {AR}.  2024.  Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes, nov. Journal Of Medicinal Chemistry. : ACS - American Chemical Society Abstract

Cu(II) complexes with 2,2':6',2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl 2(L n )]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes ( Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).

Oliveira, BB, Fernandes AR, Baptista PV.  2024.  Shrinking Cancer Research Barriers: Crafting Accessible Tumor-on-Chip Device for Gene Silencing Assays, nov. Advanced Engineering Materials. : John Wiley & Sons, Ltd. Abstract

Tumor-on-chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo-like microenvironment in cancer research. ToC use microfluidics to provide fine-tune control over environmental factors, high-throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96-well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate-based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip-based cancer models.

Malta, G, Pina J, Lima CJ, Parola JA, Branco PS.  2024.  Acenaphthylene-Based Chromophores for Dye-Sensitized Solar Cells: Synthesis, Spectroscopic Properties, and Theoretical Calculations, MAR 15. ACS OMEGA. 9:14627-14637., Number 12 Abstract
n/a
Alexandre, D, Fernandes {AR}, Baptista {PV}, Cruz C.  2024.  Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line, jul. Talanta. 274: Elsevier Abstract

Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.

Idiago-López, J, Ferreira D, Asín L, Moros M, Armenia I, Grazú V, Fernandes {AR}, {de la Fuente} {JM }, Baptista {PV}, Fratila {RM }.  2024.  Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes, aug. Nanoscale. 16:15176–15195., Number 32: RSC - Royal Society of Chemistry Abstract

In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for “opening and closing” cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.

{Franco Machado}, J, Cordeiro S, Duarte {JN }, Costa {PJ }, Mendes {PJ }, Garcia {MH}, Baptista {PV}, Fernandes {AR}, Morais {TS }.  2024.  Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents, apr. Inorganic Chemistry. 63:5783–5804., Number 13: ACS - American Chemical Society Abstract

In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.