Export 1645 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Choroba, K, Filipe B, Świtlicka A, Penkala M, Machura B, Bieńko A, Cordeiro S, Baptista {PV}, Fernandes {AR}.  2023.  In Vitro and In Vivo Biological Activities of Dipicolinate Oxovanadium(IV) Complexes, jul. Journal Of Medicinal Chemistry. 66:8580–8599., Number 13: ACS - American Chemical Society Abstract

The work is focused on anticancer properties of dipicolinate (dipic)-based vanadium(IV) complexes [VO(dipic)(N∩N)] bearing different diimines (2-(1H-imidazol-2-yl)pyridine, 2-(2-pyridyl)benzimidazole, 1,10-phenanthroline-5,6-dione, 1,10-phenanthroline, and 2,2′-bipyridine), as well as differently 4,7-substituted 1,10-phenanthrolines. The antiproliferative effect of V(IV) systems was analyzed in different tumors (A2780, HCT116, and HCT116-DoxR) and normal (primary human dermal fibroblasts) cell lines, revealing a high cytotoxic effect of [VO(dipic)(N∩N)] with 4,7-dimethoxy-phen (5), 4,7-diphenyl-phen (6), and 1,10-phenanthroline (8) against HCT116-DoxR cells. The cytotoxicity differences between these complexes can be correlated with their different internalization by HCT116-DoxR cells. Worthy of note, these three complexes were found to (i) induce cell death through apoptosis and autophagy pathways, namely, through ROS production; (ii) not to be cytostatic; (iii) to interact with the BSA protein; (iv) do not promote tumor cell migration or a pro-angiogenic capability; (v) show a slight in vivo anti-angiogenic capability, and (vi) do not show in vivo toxicity in a chicken embryo.

Neto, {JP }, Mota A, c}alo Lopes G{\c, Coelho {BJ }, Frazão J, Moura {AT }, Oliveira B, Sieira B, Fernandes J, Fortunato E, Martins R, Igreja R, Baptista {PV}, Águas H.  2023.  Open-source tool for real-time and automated analysis of droplet-based microfluidic, jul. Lab On A Chip. 23:3238–3244., Number 14: RSC - Royal Society of Chemistry Abstract

Droplet-based microfluidic technology is a powerful tool for generating large numbers of monodispersed nanoliter-sized droplets for ultra-high throughput screening of molecules or single cells. Yet further progress in the development of methods for the real-time detection and measurement of passing droplets is needed for achieving fully automated systems and ultimately scalability. Existing droplet monitoring technologies are either difficult to implement by non-experts or require complex experimentation setups. Moreover, commercially available monitoring equipment is expensive and therefore limited to a few laboratories worldwide. In this work, we validated for the first time an easy-to-use, open-source Bonsai visual programming language to accurately measure in real-time droplets generated in a microfluidic device. With this method, droplets are found and characterized from bright-field images with high processing speed. We used off-the-shelf components to achieve an optical system that allows sensitive image-based, label-free, and cost-effective monitoring. As a test of its use we present the results, in terms of droplet radius, circulation speed and production frequency, of our method and compared its performance with that of the widely-used ImageJ software. Moreover, we show that similar results are obtained regardless of the degree of expertise. Finally, our goal is to provide a robust, simple to integrate, and user-friendly tool for monitoring droplets, capable of helping researchers to get started in the laboratory immediately, even without programming experience, enabling analysis and reporting of droplet data in real-time and closed-loop experiments.

Amendoeira, {AF }, Luz A, Valente R, Roma-Rodrigues C, Ali H, {van Lier} {JE }, Marques F, Baptista {PV}, Fernandes {AR}.  2023.  Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes, feb. International Journal of Molecular Sciences. 24, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.

Oliveira, {BB }, Ferreira D, Fernandes {AR}, Baptista {PV}.  2023.  Engineering gold nanoparticles for molecular diagnostics and biosensing, feb. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 15, Number 1: John Wiley and Sons Inc. Abstract

Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.

Roma-Rodrigues, C, Fernandes {AR}, Baptista {PV}.  2023.  Exploring RAB11A Pathway to Hinder Chronic Myeloid Leukemia-Induced Angiogenesis In Vivo, feb. Pharmaceutics. 15, Number 3: MDPI AG Abstract

Neoangiogenesis is generally correlated with poor prognosis, due to the promotion of cancer cell growth, invasion and metastasis. The progression of chronic myeloid leukemia (CML) is frequently associated with an increased vascular density in bone marrow. From a molecular point of view, the small GTP-binding protein Rab11a, involved in the endosomal slow recycling pathway, has been shown to play a crucial role for the neoangiogenic process at the bone marrow of CML patients, by controlling the secretion of exosomes by CML cells, and by regulating the recycling of vascular endothelial factor receptors. The angiogenic potential of exosomes secreted by the CML cell line K562 has been previously observed using the chorioallantoic membrane (CAM) model. Herein, gold nanoparticles (AuNPs) were functionalized with an anti-RAB11A oligonucleotide (AuNP@RAB11A) to downregulate RAB11A mRNA in K562 cell line which showed a 40% silencing of the mRNA after 6 h and 14% silencing of the protein after 12 h. Then, using the in vivo CAM model, these exosomes secreted by AuNP@RAB11A incubated K562 did not present the angiogenic potential of those secreted from untreated K562 cells. These results demonstrate the relevance of Rab11 for the neoangiogenesis mediated by tumor exosomes, whose deleterious effect may be counteracted via targeted silencing of these crucial genes; thus, decreasing the number of pro-tumoral exosomes at the tumor microenvironment.

{Lenis Rojas}, {OA }, Cordeiro S, Baptista {PV}, Fernandes {AR}.  2023.  Half-sandwich Ru(II) N-heterocyclic carbene complexes in anticancer drug design, aug. Journal of Inorganic Biochemistry. 245: Elsevier Abstract

The ruthenium arene fragment is a rich source for the design of anticancer drugs; in this design, the co-ligand is a critical factor for obtaining effective anticancer complexes. In comparison with other types of ligands, N-heterocyclic carbenes (NHCs) have been less explored, despite the versatility in structural modifications and the marked stabilization of metal ions, being these characteristics important for the design of metal drugs. However, notable advances have been made in the development of NHC Ruthenium arene as anticancer agents. These advances include high antitumor activities, proven both in in vitro and in in vivo models and, in some cases, with marked selectivity against tumorigenic cells. The versatility of the structure has played a fundamental role, since they have allowed a selective interaction with their molecular targets through, for example, bio-conjugation with known anticancer molecules. For this reason, the structure-activity relationship of the imidazole, benzimidazole, and abnormal NHC ruthenium (II) η6-arene complexes have been studied. Taking into account this study, several synthetic aspects are provided to contribute to the next generations of this kind of complexes. Moreover, in recent years nanotechnology has provided innovative nanomedicines, where half-sandwich Ruthenium(II) complexes are paving their way. In this review, the recent developments in nanomaterials functionalized with Ruthenium complexes for targeted drug delivery to tumors will also be highlighted.

Moniz, M, Carmo J, Sequeira I, Rafique A, Ferreira I, Baptista A.  2023.  All-Fibre Photovoltaic Storage Devices for E-Textiles, 3-6 July. 16th International Symposium on Flexible Organic Electronics. , Thessaloniki, Greece
Moniz, M, Carmo J, Sequeira I, Rafique A, Ferreira I, Baptista A.  2023.  Carbon Yarn Coated with PEDOT:PSS for Flexible Supercapacitors: Exploring Electrospray Process, 3-6 July. 16th International Symposium on Flexible Organic Electronics. , Thessaloniki, Greece
Moniz, M, Rafique A, Carmo J, Marques A, Ferreira I, Batista A.  2023.  Electrospray of PEDOT:PSS: Enhancing the Performance of Solid-State Fiber-Shaped Supercapacitors, 3-6 July. 16th International Symposium on Flexible Organic Electronics. , Thessaloniki, Greece
Baptista, A, Moniz M, Carmo J, Sequeira I, Rafique A, Ferreira I.  2023.  All-fibre Photovoltaic Storage Devices for e-Textiles, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Rafique, A, Moniz M, Carmo J, Marques A, Ferreira I, Baptista A.  2023.  Exfoliated carbon yarn structure for highly stable flexible supercapacitors electrodes in simulated sweat solutions, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Rafique, A, Sequeira I, Bento AS, Moniz M, Carmo J, Oliveira E, Oliveira JP, Marques A, Ferreira I, Baptista A.  2023.  A facile blow spinning technique for green cellulose acetate/polystyrene composite separator for flexible energy storage devices, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Carmo, J, Moniz M, Rafique A, Ferreira I, Baptista A.  2023.  Green cellulose-based polymer electrolyte suitable for e-Textiles, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Rafique, A, Carmo J, Marques A, Ferreira I, Baptista A.  2023.  PEDOT:PSS Electrospray Functionalization of Carbon Yarns for Integration in Flexible Fibre-Shaped Supercapacitors, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Duarte, M, Alves VD, Correia M, Caseiro C, Ferreira LMA, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2023.  Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies, 2023. 224:55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

Baptista, A, Rafique A, Moniz M, Sequeira I, Carmo J, Ferreira I.  2023.  Cellulose-based supercapacitors, 11-12 May. 1st Iberian Symposium on Functional Organic Polymers. , Aveiro, Portugal
Moniz, AB, Candeias M, Boavida N.  2023.  Artificial Generative Intelligence and Work – Portugal, 10/01. :70-77., Barcelona: EPTA
Moniz, M, Rafique A, Marques A, Ferreira I, Baptista A, Carmo J, Oliveira JP.  2023.  Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors. ACS Applied Materials & Interfaces 2023. 15
Rafique, A, Sequeira I, Bento AS, Moniz M, Carmo J, Oliveira E, Oliveira JP, Marques A, Ferreira I.  2023.  A facile blow spinning technique for green cellulose acetate/polystyrene composite separator for flexible energy storage devices. Chemical Engineering Journal. 464(142515)
Lago, B, Brito M, Almeida CMM, Ferreira I, Baptista A.  2023.  Functionalisation of Electrospun Cellulose Acetate Membranes with PEDOT and PPy for Electronic Controlled Drug Release. Nanomaterials 2023. 13
Rafique, A, Ferreira I, G.Abbas, Baptista A.  2023.  Recent Advances and Challenges Towards Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Letters . 15
Garcarova, I, Valusova E, Shlapa Y, Belous A, Musatov A, Siposova K.  2023.  Surface-modified cerium dioxide nanoparticles with improved anti-amyloid and preserved nanozymatic activity. Colloids and Surfaces B: Biointerfaces. 227(113356)
Luís, MP, Pereira IS, Bugalhão JN, Simões CN, Mota C, Romão MJ, Mota LJ.  2023.  The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Infection and Immunity. 91:e00405-22., Number 4 AbstractWebsite

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.

Oliveira, {BB }, Costa B, Morão B, Faias S, Veigas B, Pereira {LP}, Albuquerque C, Maio R, Cravo M, Fernandes {AR}, Baptista {PV}.  2023.  Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples. Analytical and Bioanalytical Chemistry. 415:2849–2863., Number 14: Springer Abstract

The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor’s temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes. Graphical Abstract: [Figure not available: see fulltext.]