Export 1645 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Matias, AS, Vinhas R, Mendes R, Fernandes AR, Baptista PV.  2018.  Nanoparticles as Emerging Diagnostic Tools in Liquid Tumours. European Medical Journal Innovations. 2(1):80-87.
Lopez, A, Bacelar R, Pires I, G.Santos T, PedroSousa J, Quintino L.  2018.  Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing. 21:298-306. AbstractWebsite

The present work addressed the challenges of identifying applicable Non-Destructive Testing (NDT) techniques suitable for inspection and materials characterization techniques for Wire and Arc Additive Manufacturing (WAAM) parts. With the view of transferring WAAM to the industry and qualifying the manufacturing process for applications such as structural components, the quality of the produced parts needs to be assured. Thus, the main objective of this paper is to review the main NDT techniques and assess the capability of detecting WAAM defects, for inspection either in a monitoring, in-process or post-process scenario. Radiography and ultrasonic testing were experimentally tested on reference specimens in order to compare the techniques capabilities. Metallographic, hardness and electrical conductivity analysis were also applied to the same specimens for material characterization. Experimental outcomes prove that typical WAAM defects can be detected by the referred techniques. The electrical conductivity measurement may complement or substitute some destructive methods used in AM processing.

Barbosa, AJM, Oliveira AR, Roque ACA.  2018.  Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends in Biotechnology. 36(12):1244-1258. AbstractPDFWebsite

Animals’ olfactory systems rely on proteins, olfactory receptors (ORs) and
odorant-binding proteins (OBPs), as their native sensing units to detect odours.
Recent advances demonstrate that these proteins can also be employed as
molecular recognition units in gas-phase biosensors. In addition, the interactions
between odorant molecules and ORs or OBPs are a source of inspiration
for designing peptides with tunable odorant selectivity. We review recent
progress in gas biosensors employing biological units (ORs, OBPs, and peptides)
in light of future developments in artificial olfaction, emphasizing examples
where biological components have been employed to detect gas-phase
analytes.

Braz, L, Grenha A, Corvo MC, Lourenço JP, Ferreira D, Sarmento B, da Costa ARM.  2018.  Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers. 181:974–985.: Elsevier AbstractWebsite

The development of LBG-based nanoparticles intending an application in oral immunization is presented. Nanoparticle production occurred by mild polyelectrolyte complexation, requiring the chemical modification of LBG. Three LBG derivatives were synthesized, namely a positively charged ammonium derivative (LBGA) and negatively charged sulfate (LBGS) and carboxylate (LBGC) derivatives. These were characterized by Fourier-transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and x-ray diffraction. As a pharmaceutical application was aimed, a toxicological analysis of the derivatives was performed by both MTT test and LDH release assay.

Several nanoparticle formulations were produced using LBGA or chitosan (CS) as positively charged polymers, and LBGC or LBGS as negatively charged counterparts, producing nanoparticles with adequate properties regarding an application in oral immunization.

Branco, PS, Peixoto D, Figueiredo M, Malta G, Roma-Rodrigues C, Batista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM.  2018.  Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero arylidene-9(10H)-anthrone. European Journal of Organic Chemistry. :n/a–n/a. AbstractWebsite

A new and never yet reported hetero arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally attributed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity (Kb = 2.0(± 0.20) x 105 M-1) which is 10x higher than that described for doxorubicin (Kb = 3.2 (±0.23) × 104 M-1). Furthermore, compound 4 quenches the fluorescence emission of GelRed-CT-DNA system with a quenching constant (KSV) of 3.3(±0.3) x 103 M-1 calculated by the Stern-Volmer equation.

Vieira, T, Silva JC, Borges JP, Henriques C.  2018.  Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering. European Polymer Journal. 103:271-281. AbstractWebsite

Biodegradable polyurethanes have been studied as scaffolds for tissue engineering due to their adjustable physico-chemical properties. In this work, we synthesized a biodegradable gelatin-based poly(urethane urea) using polycaprolactone-diol, as soft segment, and isophorone diisocyanate and gelatin from cold water fish skin as hard segment. The synthesis was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance and the influence of the amount of gelatin introduced in the polymer backbone was analyzed by thermal analysis. Gelatin-based poly(urethane urea) electrospun fibrous mats and solvent cast films were then produced and their physico-chemical and biological properties studied. They present an amorphous structure, elastomeric behavior and water contact angles typical of hydrophobic surfaces. Hydrolytic degradation was analyzed in phosphate buffer saline (PBS), lipase and trypsin solutions. No mass changes were detected during 37 days in PBS and trypsin while significant degradation by lipase was observed. Human foetal foreskin fibroblasts were seeded on the fibrous mats and films. Populations were evaluated by colorimetric cell viability assays and morphology by fluorescence imaging. The substrates supported cell adhesion and proliferation. The novel gelatin-based poly(urethane urea) fibrous mats offer attractive physico-chemical and biological properties for soft tissue engineering applications.

Dias, D, Lapa N, Bernardo M, Ribeiro W, Matos I, Fonseca I, Pinto F.  2018.  Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology. 266:139-150. AbstractWebsite

Blends of rice waste streams were submitted to co-gasification assays. The resulting chars (G1C and G2C) were characterized and used in Cr(III) removal assays from a synthetic solution. A Commercial Activated Carbon (CAC) was used for comparison purposes. The chars were non-porous materials mainly composed by ashes (68.3–92.6% w/w). The influences of adsorbent loading (solid/liquid ratio – S/L) and initial pH in Cr(III) removal were tested. G2C at a S/L of 5 mg L−1 and an initial pH of 4.50 presented an uptake capacity significantly higher than CAC (7.29 and 2.59 mg g−1, respectively). G2C was used in Cr(III) removal assays from an industrial wastewater with Cr(III) concentrations of 50, 100 and 200 mg L−1. Cr(III) removal by precipitation (uptake capacity ranging from 11.1 to 14.9 mg g−1) was more effective in G2C, while adsorption (uptake capacity of 16.1 mg g−1) was the main removal mechanism in CAC.

Godino-Ojer, M, Milla-Diez L, Matos I, Durán-Valle CJ, Bernardo M, Fonseca IM, Pérez Mayoral E.  2018.  Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem. 10:5215-5223., Number 22 AbstractWebsite

Abstract This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3-dihydro-1H-1,5-benzodiazepine – nitrogen heterocyclic compounds. Benzodiazepines and derivatives are fine chemicals exhibiting interesting therapeutic properties. Carbon materials have been barely investigated in the synthesis of this type of compounds. Two commercial carbon materials were selected exhibiting different textural properties: i) Norit RX3 (N) as microporous sample and ii) mesoporous xerogel (X), both used as supports of ZrO2 (Zr) and ZrO2/SO42− (SZr). The supported SZr led to higher conversion values and selectivities to the target benzodiazepine. Both chemical and textural properties influenced significantly the catalytic performance. Particularly relevant are the results concerning the non-sulfated samples, NZr and XZr, that were able to catalyze the reaction leading to the target benzodiazepine with high selectivity (up to 80 %; 2 h). These results indicated an important role of the carbon own surface functional groups, avoiding the use of H2SO4. Even very low amounts of SZr supported on carbon reveal high activity and selectivity. Therefore, the carbon materials herein reported can be considered an efficient and sustainable alternative bifunctional catalysts for the benzodiazepine synthesis.

Surra, E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota JP.  2018.  Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management. 72:193-205. AbstractWebsite

In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above 66% v/v. These results show that pre-treatment with H2O2, at room temperature, is a promising low cost way to valorize MCW through co-digestion with hOFMSW.

Tufa, RA, Pawlowski S, Veerman J, Bouzek K, Fontananova E, di Profio G, Velizarov S, Goulão Crespo J, Nijmeijer K, Curcio E.  2018.  Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied Energy. 225:290-331. AbstractWebsite

Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of different salinity. This work presents a critical review of the most significant achievements in RED, focusing on membrane development, stack design, fluid dynamics, process optimization, fouling and potential applications. Although RED technology is mainly investigated for energy generation from river water/seawater, the opportunities for the use of concentrated brine are considered as well, driven by benefits in terms of higher power density and mitigation of adverse environmental effects related to brine disposal. Interesting extensions of the applicability of RED for sustainable production of water and hydrogen when complemented by reverse osmosis, membrane distillation, bio-electrochemical systems and water electrolysis technologies are also discussed, along with the possibility to use it as an energy storage device. The main hurdles to market implementation, predominantly related to unavailability of high performance, stable and low-cost membrane materials, are outlined. A techno-economic analysis based on the available literature data is also performed and critical research directions to facilitate commercialization of RED are identified.

Madureira, J, Melo R, Verde SC, Matos I, Bernardo M, Noronha JP, Marga{\c c}a FMA, Fonseca IM.  2018.  Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology. 77:456–466., Number 2: IWA Publishing AbstractWebsite

The adsorption of four phenolic compounds (gallic acid, protocatechuic acid, vanillic acid and syringic acid) is investigated using a synthesized mesoporous carbon on both single and multi-component synthetic solutions. Some correlation of the adsorption capacity of the carbon and the nature of adsorbate could be made, except for gallic acid whose concentration decrease seems to be not exclusively due to adsorption but also to polymerization reaction. In the multi-component mixture, negative effects in the adsorption capacity are observed probably due to competition for the active centers of the adsorbent surface. In desorption studies, ethanol presents better performance than water and acetonitrile. Vanillic acid is the compound with the higher adsorption and interestingly it is then possible to desorb a relatively high amount of it from the adsorbent, which may represent a possibility for a selective recovery of vanillic acid. These results present a potential way to treat the wastewater from the cork industry.

Larsen, SR, Hansteen M, Pacakova B, Theodor K, Arnold T, Rennie AR, Helgesen G, Knudsen KD, Bordallo HN, Fossum JO, Cavalcanti LP.  2018.  Sample Cell for Studying Liquid Interfaces with an {\emph{in Situ}} Electric Field Using {{X}}-Ray Reflectivity and Application to Clay Particles at Oil–{}Oil Interfaces. Journal of Synchrotron Radiation. 25:915-917., Number 3 Abstract
n/a
2017
Raposo, {LR }, Roma-Rodrigues C, Faísca P, Alves M, Henriques J, Carvalheiro {MC }, Corvo {ML }, Baptista {PV }, Pombeiro {AJ }, Fernandes {AR }.  2017.  Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT, sep. Veterinary and Comparative Oncology. 15:952–967., Number 3: Wiley-Blackwell Abstract

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Mendes, R, Pedrosa P, Lima {JC }, Fernandes {AR}, Baptista {PV}.  2017.  Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, sep. Scientific Reports. 7, Number 1: Nature Publishing Group Abstract

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

Fonseca, DA, Guerra AF, Carvalho F, Fernandes E, Ferreira LM, Branco PS, Antunes PE, Antunes MJ, Cotrim MD.  2017.  Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro, OCT. CARDIOVASCULAR TOXICOLOGY. 17:405-416., Number 4 Abstract
n/a
Bernardo, MMS, Madeira CAC, dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM.  2017.  Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars, Oct. Environmental Science and Pollution Research. 24:22698–22708., Number 28 AbstractWebsite

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5–81.5{%}), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g−1) and higher micropore content (V micro = 0.05 cm3 g−1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g−1) and caffeine (8.0 mg g−1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.

Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Coelho, {BJ}, Veigas B, Águas H, Fortunato E, Martins R, Baptista {PV}, Igreja R.  2017.  A digital microfluidics platform for loop-mediated isothermal amplification detection, nov. Sensors. 17, Number 11: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Pedrosa, P, Heuer-Jungemann A, Kanaras {AG }, Fernandes {AR}, Baptista {PV}.  2017.  Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles, nov. Journal of Nanobiotechnology. 15, Number 1: BioMed Central (BMC) Abstract

Background: Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Results: Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. Conclusions: The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

Veigas, B, Pinto J, Vinhas R, Calmeiro T, Martins R, Fortunato E, Baptista {PV}.  2017.  Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform, may. Biosensors & Bioelectronics. 91:788–795.: Elsevier Abstract

Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Roma-Rodrigues, C, Pereira F, {Alves De Matos} {AP}, Fernandes M, Baptista {PV}, Fernandes {AR}.  2017.  Smuggling gold nanoparticles across cell types: A new role for exosomes in gene silencing, may. Nanomedicine-Nanotechnology Biology And Medicine. 13:1389–1398., Number 4: Future Medicine Abstract

Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells’ phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells.

Feio-Azevedo, R, Costa VM, Ferreira LM, Branco PS, Pereira FC, Bastos ML, Carvalho E, Capela JP.  2017.  Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells, MAR 5. TOXICOLOGY LETTERS. 269:65-76. Abstract
n/a
Mendes, R, Fernandes {AR}, Baptista {PV}.  2017.  Gold nanoparticle approach to the selective delivery of gene silencing in cancer-The case for combined delivery?, mar Virus Genes. 8, Number 3: Springer Science Business Media Abstract

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.

Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  Developments in the Reactivity of 2-Methylimidazolium Salts, JUN 16. JOURNAL OF ORGANIC CHEMISTRY. 82:6232-6241., Number 12 Abstract
n/a