Export 1645 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Peixoto, D, Malta G, Cruz H, Barroso S, Carvalho AL, Ferreira LM, Branco PS.  2019.  N-Heterocyclic olefin catalysis for the ring opening of cyclic amidine compounds: a pathway to the synthesis of ε-caprolactam and γ-lactam-derived amines, 2019. The Journal of Organic Chemistry. : American Chemical Society AbstractWebsite

n/a

Roma-Rodrigues, C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV.  2019.  Nanotheranostics Targeting the Tumor Microenvironment, 2019. Front Bioeng Biotechnol. 7:197. AbstractWebsite

Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.

Kourmentza, C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.  2019.  Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product, 2019. Bioresour Technol. 281:31-40. AbstractWebsite

While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200mug/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.

Alves-Barroco, C, Roma-Rodrigues C, Raposo LR, Bras C, Diniz M, Caco J, Costa PM, Santos-Sanches I, Fernandes AR.  2019.  Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models, 2019. Microbiologyopen. 8(1):e00623. AbstractWebsite

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability.

Das, K, Datta A, Massera C, Roma-Rodrigues C, Barroso M, Baptista PV, Fernandes AR.  2019.  Structural aspects of a trimetallic CuII derivative: cytotoxicity and anti-proliferative activity on human cancer cell lines, 2019. Journal of Coordination Chemistry. 72(5-7):920-940. AbstractWebsite
n/a
Almeida, J, Roma-Rodrigues C, Mahmoud AG, Guedes da Silva MFC, Pombeiro AJL, Martins LMDRS, Baptista PV, Fernandes AR.  2019.  Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate, 2019. J Inorg Biochem. 199:110789. AbstractWebsite

The water-soluble 1D helical coordination polymer [Ag(Tpms)]n (1) [Tpms=tris(pyrazolyl)methane sulfonate, (-)O3SC(pz)3; pz=pyrazolyl] was synthesized and fully characterized, its single-crystal X-ray diffraction analysis revealing the ligand acting as a bridging chelate N3-donor ligand. The antiproliferative potential of 1 was performed on two human tumour cell lines, A2780 and HCT116, and in normal fibroblasts, with a much higher effect in the former cell line (IC50 of 0.04muM) as compared to the latter cell line and to normal fibroblasts. Compound 1 does not alter cell cycle progression but interferes with the adherence of A2780 cells triggering cell apoptosis. Apoptosis appears to occur via the extrinsic pathway (no changes in mitochondria membrane potential, reactive oxygen species (ROS) and pro-apoptotic (B-cell lymphoma 2 (BCL-2) associated protein (BAX))/anti-apoptotic (BCL-2) ratio) being this hypothesis also supported by the presence of silver mainly in the supernatants of A2780 cells. Results also indicated that cell death via autophagy was triggered. Proteomic analysis allowed us to confirm that compound 1 is able to induce a stress response in A2780 cells that is related with its antiproliferative activity and the trigger of apoptosis.

Pedrosa, P, Corvo ML, Ferreira-Silva M, Martins P, Carvalheiro MC, Costa PM, Martins C, Martins LMDRS, Baptista PV, Fernandes AR.  2019.  Targeting Cancer Resistance via Multifunctional Gold Nanoparticles, 2019. Int J Mol Sci. 20(21) AbstractWebsite

Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.

Roma-Rodrigues, C, Mendes R, Baptista PV, Fernandes AR.  2019.  Targeting Tumor Microenvironment for Cancer Therapy, 2019. Int J Mol Sci. 20(4) AbstractWebsite

Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, "tumor on a chip" or multicellular tumor-spheroids.

Marques, AC, Miglietta D, Gaspar G, Baptista AC, Gaspar A, Perdigão A, Soares I, Bianchi C, Sousa D, Morais Faustino BM, Amaral VS, Santos T, Gonçalves AP, da Silva RC, Giorgis F, Ferreira I.  2019.   Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray. Materials for Renewable and Sustainable Energy. :8-21.
Fernandes, C, Pina AS, Barbosa AJM, Padrão I, Duarte F, Andreia C, Teixeira S, Alves V, Gomes P, Fernandes TG, Dias AMGC, Roque ACA.  2019.  Affinity‐triggered assemblies based on a designed peptide‐peptide affinity pair. Biotechnology Journal. -(-):-. AbstractWebsite

Affinity‐triggered assemblies rely on affinity interactions as the driving force to assemble physically‐crosslinked networks. WW domains are small hydrophobic proteins binding to proline‐rich peptides that are typically produced in the insoluble form. Previous works attempted the biological production of the full WW domain in tandem to generate multivalent components for affinity‐triggered hydrogels. In this work, an alternative approach was followed by engineering a 13‐mer minimal version of the WW domain that retains the ability to bind to target proline‐rich peptides. Both ligand and target peptides were produced chemically and conjugated to multivalent polyethylene glycol, yielding two components. Upon mixing, they together form soft biocompatible affinity‐triggered assemblies, stable in stem cell culture media, and displaying mechanical properties in the same order of magnitude as for those hydrogels formed with the full WW protein in tandem.

Cristovão, AF, Sousa D, Silvestre F, Ropio I, Gaspar A, Henriques C, Velhinho A, Baptista AC, Faustino M, Ferreira I.  2019.  Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. 3D Printing in Medicine. 5:12. AbstractWebsite

Background
The use of 3D printing of hydrogels as a cell support in bio-printing of cartilage, organs and tissue has attracted much research interest. For cartilage applications, hydrogels as soft materials must show some degree of rigidity, which can be achieved by photo- or chemical polymerization. In this work, we combined chemical and UV laser polymeric cross-linkage to control the mechanical properties of 3D printed hydrogel blends. Since there are few studies on UV laser cross-linking combined with 3D printing of hydrogels, the work here reported offered many challenges.

Methods
Polyethylene glycol diacrylate (PEGDA), sodium alginate (SA) and calcium sulphate (CaSO4) polymer paste containing riboflavin (vitamin B2) and triethanolamine (TEOHA) as a biocompatible photoinitiator was printed in an extrusion 3D plotter using a coupled UV laser. The influence of the laser power on the mechanical properties of the printed samples was then examined in unconfined compression stress-strain tests of 1 × 1 × 1 cm3 sized samples. To evaluate the adhesion of the material between printed layers, compression measurements were performed along the parallel and perpendicular directions to the printing lines.

Results
At a laser density of 70 mW/cm2, Young’s modulus was approximately 6 MPa up to a maximum compression of 20% in the elastic regime for both the parallel and perpendicular measurements. These values were within the range of biological cartilage values. Cytotoxicity tests performed with Vero cells confirmed the cytocompatibility.

Conclusions
We printed a partial tracheal model using optimized printing conditions and proved that the materials and methods developed may be useful for printing of organ models to support surgery or even to produce customized tracheal implants, after further optimization.

Cristovão, AF, Sousa D, Silvestre F, Ropio I, Gaspar A, Henriques C, Velhinho A, Baptista AC, Faustino M, Ferreira I.  2019.  Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. 3D Print Med. 5:12.
Collaço, F, Simoes SG, Dias L, Duic N, Seixas J, Bermann C.  2019.  The dawn of urban energy planning – synergies between energy and urban planning for São Paulo (Brazil) megacity. Journal of Cleaner Production. 215:458-479,doi:https://doi.org/10.1016/j.jclepro.2019.01.013.
dos Santos, R, Figueiredo C, Viecinski AC, Pina AS, Barbosa AJM, Roque ACA.  2019.  Designed affinity ligands to capture human serum albumin. Journal of Chromatography A. 1583:88-97. AbstractWebsite

Human serum albumin (HSA) in an important therapeutic agent and disease biomarker, with an increasing market demand. By proteins and drugs that bind to HSA as inspiration, a combinatorial library of 64 triazine-based ligands was rationally designed and screened for HSA binding at physiological conditions. Two triazine-based lead ligands (A3A2 and A6A5), presenting more than 50% HSA bound and high enrichment factors, were selected for further studies. Binding and elution conditions for HSA purification from human plasma were optimized for both ligands. The A6A5 adsorbent yielded a purified HSA sample with 98% purity at 100% recovery yield under mild binding and elution conditions.

Raminhos, J, Borges JB, Velhinho A.  2019.  Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Materials and Structures. 28(4):045010. AbstractWebsite

his paper reports the application of additive manufacturing technology to fabricate bi-dimensional lightweight composite meshes capable of demonstrating auxetic properties (negative Poisson's ratio (NPR)) in combination with negative thermal expansion (NTE) behaviour, using as constituent materials polymers that do not exhibit NTE behaviour. To describe the combination of NPR and NTE characteristics, the designation of 'anepectic' is being proposed. Each mesh, obtained from varying either the material combination or the design parameters, was tested on a heated silicone bath to study the effects of the different combinations on the coefficient of thermal expansion (CTE). It was found that all meshes studied demonstrated a successful combination of NPR and NTE behaviours, and it was revealed that there is a possibility to tailor the meshes to activate the NTE behaviour within a chosen range of temperatures. For an extreme case, a Poisson's ratio of −0.056, along with a CTE of −1568 × 10−6 K−1 has been achieved.

Cordas, CM, Campaniço M, Baptista R, Maia L, Moura I, Moura JJG.  2019.  Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. J Inorg Biochem. 196:110694.Website
Vieira, T, Silva JC, do Rego BAM, Borges JB, Henriques C.  2019.  Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Materials Science and Engineering: C. 103:109819. AbstractWebsite

The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 μm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.

Khili, F, Borges JB, Almeida PL, Boukherroub R, Omrani AD.  2019.  Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization. 10:1913-1927. AbstractWebsite

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

Khili, F, Borges J, Almeida PL, Boukherroub R, Omrani AD.  2019.  Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization. 10:1913–1927. AbstractWebsite

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

Barbosa, AJM, Roque ACA.  2019.  Free Marine natural products databases for biotechnology and bioengineering. Biotechnology Journal. -(-):-. AbstractWebsite

Marine organisms and microorganisms are a source of natural compounds with unique chemical features. These chemical properties are useful for the discovery of new functions and applications of Marine Natural Products (MNP). To extensively exploit the potential implementations of MNPs, they are gathered in chemical databases consenting their study and screening for applications of biotechnological interest. However, classification of MNPs is currently poor in generic chemical databases. The present availability of free‐access focused MNPs databases is scarce and the molecular diversity of these databases is still very low when compared to paid‐access ones. In this review paper, the current scenario of free‐access MNP databases is presented as well as the hindrances involved in their development, mainly compound dereplication. Examples and opportunities on using freely accessible MNP databases in several important areas of biotechnology are also assessed. The scope of this paper is as well to notify the latent potential of these information sources for the discovery and development of new MNPs in biotechnology, and push future efforts to develop a public domain MNP database freely available for the scientific community.

Coroa, J, Morais Faustino BM, Marques AC, Bianchi C, Koskinen T, Juntunen T, Tittonen I, Ferreira I.  2019.  Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate. RSC Advances. 9:35384.
Carvalho, H, Branco R, Leite F, Matzapetakis M, Roque ACA, Iranzo O.  2019.  Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catalysis Science Technology. 9(23):6723-6736. AbstractWebsite

Hydrolytic zinc enzymes are common targets for protein design. The versatility of the zinc chemistry can be combined with the usage of small protein scaffolds for biocatalytic applications. Despite this, the computational design of metal-containing proteins remains challenging due to the need to properly model protein–metal interactions. We addressed these issues by developing a computational multi-state design approach of artificial zinc hydrolases based on small protein scaffolds. The zinc-finger peptide Sp1f2 was redesigned to accommodate a catalytic zinc centre and the villin headpiece C-terminal subdomain HP35 was de novo designed for metal-binding and catalytic activity. Both metallopeptides exhibited metal-induced folding (KZnP,app ≈ 2 × 105 M−1) and hydrolytic activity (k2 ≈ 0.1 M−1 s−1) towards an ester substrate. By focusing on the inherent flexibility of small proteins and their interactions with the metal ion by molecular dynamics simulations and spectroscopic studies, we identified current limitations on computational design of metalloenzymes and propose how these can be overcome by integrating information of protein–metal interactions in long time scale simulations.

Ramos, DJ, Carrêlo H, Borges JP, Romero NC, Garcia JS, Cidade MT.  2019.  Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials. 12(7):1-13. AbstractWebsite

A (model) composite system for drug delivery was developed based on a thermoresponsive hydrogel loaded with microparticles. We used Pluronic F127 hydrogel as the continuous phase and alginate microparticles as the dispersed phase of this composite system. It is well known that Pluronic F127 forms a gel when added to water in an appropriate concentration and in a certain temperature range. Pluronic F127 hydrogel may be loaded with drug and injected, in its sol state, to act as a drug delivery system in physiological environment. A rheological characterization allowed the most appropriate concentration of Pluronic F127 (15.5 wt%) and appropriate alginate microparticles contents (5 and 10 wt%) to be determined. Methylene blue (MB) was used as model drug to perform drug release studies in MB loaded Pluronic hydrogel and in MB loaded alginate microparticles/Pluronic hydrogel composite system. The latter showed a significantly slower MB release than the former (10 times), suggesting its potential in the development of dual cargo release systems either for drug delivery or tissue engineering.

Cruz, H, Jordão N, Dionísio M, Pina F, Branco LC.  2019.  Intrinsically Electrochromic Deep Eutectic Solvents. Chemistry Select. 4:1-6.Website
Santos, MM, Raposo LR, Carrera GVSM, Costa A, Dionisio M, Baptista PV, Fernandes AR, Branco LC.  2019.  Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug. ChemMedChem . 14:907–911.Website