Export 49 results:
Sort by: Author Title Type [ Year  (Asc)]
Cordeiro, T, Santos AFM, Nunes G, Cunha G, Sotomayor JC, Fonseca IM, Florence Danède, Dias CJ, Cardoso MM, Correia NT, Viciosa TM, Dionísio M.  2016.  Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixes. The Journal of Physical Chemistry C. 120:14390-14401., Number 26 AbstractWebsite

The pharmaceutical drug naproxen was loaded in three different silica hosts with pore diameters of 2.4 (MCM), 3.2 (MCM), and 5.9 nm (SBA), respectively: napMCM\_2.4 nm, napMCM\_3.2 nm, and napSBA\_5.9 nm. To access the guest physical state in the prepared composites, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared spectroscopy were used. The different techniques provided complementary information on a molecular population that was revealed to be distributed among different environments, namely the pore core, the inner pore wall, and the outer surface. It was found that naproxen is semicrystalline in the higher pore size matrix being able to crystallize inside pores; after melting it undergoes full amorphization. In the case of the lower pore size matrix, naproxen crystallizes outside pores due to an excess of filling while most of the remaining fraction is incorporated inside the pores as amorphous. Crystallinity in these two composites was observed by the emergence of the Bragg peaks in the XRD analysis, whereas for napMCM\_3.2 nm only the amorphous halo was detected. The latter only exhibits the step due to the glass transition by DSC remaining stable as amorphous at least for 12 months. The glass transition in the three composites is abnormally broad, shifting to higher temperatures as the pore size decreases, coherent with the slowing down of molecular mobility as probed by dielectric relaxation spectroscopy. For napSBA\_5.9 nm the dielectric response was deconvoluted in two processes: a hindered surface (S-) process due to molecules interacting with the inner pore wall and a faster α-relaxation associated with the dynamic glass transition due to molecules relaxing in the pore core, which seems a manifestation of true confinement effects. The drug incorporation inside a nanoporous matrix, mainly in 3.2 nm pores, was revealed to be a suitable strategy to stabilize the highly crystallizable drug naproxen in the amorphous/supercooled state and to control its release from the silica matrix, allowing full delivery after 90 min in basic media.

Batista, MKS, Mestre AS, Matos I, Fonseca IM, Carvalho AP.  2016.  Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Adv.. 6:45419-45427.: The Royal Society of Chemistry AbstractWebsite

Biodiesel production generates low particle size rapeseed waste (recovered from warehouse air filtration systems) that was herein explored as promising biomass precursor of chemically activated carbons. The influence of several experimental parameters on the porosity development was investigated. No benefit was observed when solution impregnation was made nor a significant dependence of the biomass : K2CO3 ratio was observed and{,} as expected{,} high porosity development was obtained only for treatments at 700 [degree]C. Microporous materials with apparent surface area around 1000 m2 g-1 were obtained comparing favorably with literature data regarding activated carbons from rapeseed processing by-products. A selected lab-made sample and two commercial carbons were tested as adsorbents of caffeine from aqueous solution. Although commercial materials present a quicker adsorption rate{,} regarding adsorption capacity the lab-made sample reaches the same value attained by a benchmark material. The regeneration tests made over the rapeseed derived carbon through heat treatments at 600 [degree]C for 1 hour under N2 flow proved that at least two exhaustion-regeneration cycles can be made since the material retains a caffeine adsorption capacity similar to that of the fresh carbon. Therefore{,} a waste management problem of biodiesel industry - rapeseed residue - can be transformed in a valuable material with promising properties for environmental remediation processes.

do Fraga, AC, Quitete CPB, Ximenes VL, Sousa-Aguiar EF, Fonseca IM, Rego AMB.  2016.  Biomass derived solid acids as effective hydrolysis catalysts. Journal of Molecular Catalysis A: Chemical. 422:248-257. AbstractWebsite

The conversion of cellulose into products with higher added value often includes a depolymerization step to obtain glucose, its fundamental unity. The depolymerization reaction is carried out via hydrolysis of the β-1,4-glycosidic bond. The search for a solid acid catalyst capable of breaking these bonds is gaining increasing prominence in the literature. In this regard, sulfonated carbons have shown promising results. This work evaluated the use of a residue from the extraction of palm oil as raw material for the production of sulfonated carbons. The raw material was carbonized and sulfonated. The obtained solid acids were tested in the hydrolysis of cellobiose, a dimer of glucose often used as a model compound for cellulose. The hydrolysis reaction is the first step in converting renewable carbon sources into chemical products and biofuels. Some aspects were investigated, as the effect of carbonization temperature on the concentration of sulfonic groups, the results showing that the content thereof reached a maximum value at 300°C. Regarding the hydrolysis of cellobiose, it has been identified that there is a relationship between the concentration of sulfonic acid groups and the activity of these catalysts. However, there is a drop in the turnover number as the amount of sulfonic acid sites increases. This was related to a preferred position sulfonation mechanism. Furthermore, sulfonated carbons showed higher activity than the commercial acid resins, indicating that this material may be a good option for the generation of solid acid catalysts.

Mestre, AS, Nabiço A, Figueiredo PL, Pinto ML, Santos SMCS, Fonseca IM.  2016.  Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal. 286:538-548. AbstractWebsite

Clofibric acid is the metabolite and active principle of blood lipid regulators, it represents the class of acidic pharmaceuticals, and is one of the most persistent drug residues detected in the aquatic environment worldwide. This interdisciplinary work evaluates the effect of solution pH and water hardness in clofibric acid adsorption onto commercial activated carbons. Kinetic and equilibrium assays revealed that the highest clofibric acid removal efficiencies (>70%) were attained at pH 3, and that at pH 8 water hardness degree plays a fundamental role in the adsorption process. In hard water at pH 8 the removal efficiency values increased by 22 or 46% points depending on the carbon sample. Adsorbents’ textural properties also affect the adsorption process since for the microporous sample (CP) the increase of water hardness has a great influence in kinetic and equilibrium data, while for the micro+mesoporous carbon (VP) the variation of the water hardness promoted less significant changes. At pH 3 the increase of water hardness leads to changes in the adsorption mechanism of clofibric acid onto CP carbon signaled by a transition from an S-type to an L-type curve. At pH 8 the change from deionized water to hard water doubles the maximum adsorption capacity of sample CP (101.7mgg−1 vs 211.9mgg−1, respectively). The adsorption enhancement, with water hardness under alkaline conditions, was reasoned in terms of calcium complexation with clofibrate anion exposed by molecular modeling and conductivity studies. Ca2+ complexation by other acidic organic compounds may also occur, and should be considered, since it can play a fundamental role in improved design of water treatment processes employing activated carbons.

Lyubchik, S, Lygina E, Lyubchyk A, Lyubchik S, Loureiro JM, Fonseca IM, Ribeiro AB, Pinto MM, Figueiredo AMSá.  2016.  The Kinetic Parameters Evaluation for the Adsorption Processes at ``Liquid–Solid'' Interface. Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development. (Ribeiro, Alexandra B., Mateus, Eduardo P., Couto, Nazaré, Eds.).:81–109., Cham: Springer International Publishing Abstract

The kinetic parameters of the adsorption process at ``liquid–solid'' interface have been evaluated through the sets of time-based experiments of the Cr(III) adsorption under varying temperature, initial metal concentration, and carbon loading for two sets of the commercially available activated carbons and their post-oxidized forms with different texture and surface functionality.

Sharipova, AA, Aidarova SB, Bekturganova NE, Tleuova A, Schenderlein M, Lygina O, Lyubchik S, Miller R.  2016.  Triclosan as model system for the adsorption on recycled adsorbent materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 505:193-196. AbstractWebsite

The adsorption of triclosan as model system was studied to qualify activated carbon sorbents recycled from gas masks (civilian gas mask GP5). The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the activated carbon characterized by scanning electron microscopy, and the amount of the adsorbed triclosan on the activated carbon quantified by a mass balance method. Experimental isotherms were fitted by Langmuir, Freundlich and Sips adsorption models. It was obtained that the contact time is a crucial sorption parameter that provides information on the optimum adsorption efficiency. It was shown that the maximum efficiency of GP5 (88%) is obtained after 10days of adsorption at a maximal concentration of triclosan and carbon loading 1mg/l. No significant adsorption efficiency differences were measured after 5 and 10days of adsorption. The non-linear Sips isotherm, a combined Freundlich–Langmuir model, provides suitable fitting results. The observed remarkable adsorption capacity of activated carbon (GP5) towards triclosan adsorption (∼85mg/g) makes it a viable solution for wastewater treatment.

Bernardo, M, Rodrigues S, Lapa N, Matos I, Lemos F, Batista MKS, Carvalho AP, Fonseca I.  2016.  High efficacy on diclofenac removal by activated carbon produced from potato peel waste, Aug. International Journal of Environmental Science and Technology. 13:1989–2000., Number 8 AbstractWebsite

In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g−1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g−1, and Langmuir constants of 0.38 and 1.02 L mg−1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.

Silva, CAC, Figueiredo FCA, Rodrigues R, Sairre MI, Gonçalves M, Matos I, Fonseca IM, Mandelli D, Carvalho WA.  2016.  Enhancing the biodiesel manufacturing process by use of glycerin to produce hyacinth fragrance, Jun. Clean Technologies and Environmental Policy. 18:1551–1563., Number 5 AbstractWebsite

Oxidized and sulfonated-activated carbons (AC) were tested in the catalytic conversion of glycerol by acetalization reactions. The solids were treated with concentrated nitric acid and/or fuming sulfuric acid (AC, AC-N, AC-S, and AC-NS). The presence of sulfur and an increase in the acidity of the solids demonstrate the suitability of the oxidation as well as the sulfonation process, especially in the sample treated with concentrated nitric acid and fuming sulfuric acid (AC-NS). The best catalyst for the reaction of glycerol acetalization with phenylacetaldehyde was AC-NS, with a phenylacetaldehyde conversion of 95 {%} after 90 min at 383 K and selectivity of 88 and 12 {%}, respectively, to dioxolane and dioxane. These products can be used as hyacinth fragrance flavoring compounds. Furthermore, a contribution of homogeneous catalysis in these systems was not identified. Thus, we identified a possibility of glycerol conversion, a biodiesel by-product, into value-added products by suitable catalysts produced from activated carbons.

Bianchi, C, Ferreira LM, Loureiro J, Rodrigues A, Duarte P, Baptista AC, Ferreira IM.  2016.  Vanadium Pentoxide Alloyed with Graphite for Thin-Film Thermal Sensors, Mar. Journal of Electronic Materials. 45:1987–1991., Number 3 AbstractWebsite

The thermoelectric (TE) properties of vanadium pentoxide (V2O5) alloyed with graphite (G) were studied as a function of its incorporation percentage. Variable weight percentages of graphite powder (0–50{%}) were added to V2O5 powder and their mixtures were evaporated by a thermal evaporation technique to form thin films with a thickness in the range of 30–80 nm. In the infrared wavelength region, the transmittance of the obtained films increased as the G percentage was increased, while in the visible range, it decreased with G up to 10{%}. The TE properties were improved when G was in the range of 10–30{%}, while it decreased for the other percentages: Seebeck coefficient (S) changed from 0.6 mV/K to 0.9 mV/K and was zero with a G of 50{%}; the electrical conductivity varied slightly from 5 ($Ømega$m)−1 to 0.7 ($Ømega$m)−1 while the mobility improved from 0.07 cm2/V s to 1.5 cm2/V s and the respective carrier concentration was reduced, from 1 × 1018 cm−3 to 4 × 1016 cm−3. These films were applied as temperature sensors evaluating the thermovoltage as a function of thermal gradient between two electrodes, in which one was maintained at room temperature.

Godinho, D, Dias D, Bernardo M, Lapa N, Fonseca I, Lopes H, Pinto F.  2017.  Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials. 321:173-182. AbstractWebsite

The present work aims to assess the efficiency of chars, obtained from the gasification and co-pyrolysis of rice wastes, as adsorbents of Cr3+ from aqueous solution. GC and PC chars, produced in the gasification and co-pyrolysis, respectively, of rice husk and polyethylene were studied. Cr3+ removal assays were optimised for the initial pH value, adsorbent mass, contact time and Cr3+ initial concentration. GC showed a better performance than PC with about 100% Cr3+ removal, due to the pH increase that caused Cr precipitation. Under pH conditions in which the adsorption prevailed (pH<5.5), GC presented the highest uptake capacity (21.1mg Cr3+ g−1 char) for the following initial conditions: 50mg Cr3+ L−1; pH 5; contact time: 24h;L/S ratio: 1000mLg−1. The pseudo-second order kinetic model showed the best adjustment to GC experimental data. Both the first and second order kinetic models fitted well to PC experimental data. The ion exchange was the dominant phenomenon on the Cr3+ adsorption by GC sample. Also, this char significantly reduced the ecotoxicity of Cr3+ solutions for the bacterium Vibrio fischeri. GC char proved to be an efficient material to remove Cr3+ from aqueous solution, without the need for further activation.

Correa, CR, Bernardo M, Ribeiro RPPL, Esteves IAAC, Kruse A.  2017.  Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. Journal of Analytical and Applied Pyrolysis. 124:461-474. AbstractWebsite

Digestate from a biogas plant that uses solely biomass for biogas production was used as precursor material for the production of activated carbon as an alternative to increase its added value. The digestate was converted into hydrochar by hydrothermal carbonization varying the temperature (190–250°C), residence time (3 and 6h), and pH (5 and 7). Temperature followed by residence time had the strongest influence on the chemical composition and thermal stability of the hydrochars. A significant effect of the pH was not observed. The hydrochars were chemically activated to enhance the surface area and use them as activated carbon. As a consequence, the surface areas increased from 8 to 14m2/g (hydrochars) to 930–1351m2/g (activated carbons). Furthermore, large micropore volumes were measured (0.35–0.50cm3/g). The activated carbons were studied as adsorbents in gas phase applications, showing that the product of digestate is a very effective adsorbent for carbon dioxide (CO2). Especially the activated carbon obtained from the hydrochar produced at 250°C for 6h, which adsorbed 8.80mol CO2/kg at 30°C and 14.8bar. Additionally, the activated carbons showed a stronger affinity towards CO2 compared to methane (CH4), which makes this material suitable for the upgrading of raw biogas to biomethane.

Faria, P, Duarte P, Barbosa D, Ferreira I.  2017.  New composite of natural hydraulic lime mortar with graphene oxide. Construction and Building Materials. 156:1150-1157. AbstractWebsite

Recent studies show the incorporation of graphene oxide (GO) in cement composites. But these composites are frequently incompatible with original materials for building rehabilitation. To overcome this limitation, natural hydraulic lime mortars were used as matrix, and the influence of GO percentage and type of mixing was investigated. The influence on the microstructure, mechanical and physical properties was assessed. The best results were obtained with dispersed GO at concentrations of 0.05% and 0.1%. A slight improvement of mechanical and physical characteristics was achieved. This could lead to new mortars with improved properties that can be used for building rehabilitation.

Figueira, J, Loureiro J, Marques J, Bianchi C, Duarte P, Ruoho M, Tittonen I, Ferreira I.  2017.  Optimization of Cuprous Oxides Thin Films to be used as Thermoelectric Touch Detectors. ACS Applied Materials & Interfaces. 9:6520-6529., Number 7 AbstractWebsite

The electronic and optical properties of p-type copper oxides (CO) strongly depend on the production technique as it influences the obtained phases: cuprous oxide (Cu2O) or cupric oxide (CuO), the most common ones. Cu films deposited by thermal evaporation have been annealed in air atmosphere, with temperature between 225 and 375 °C and time between 1 and 4 h. The resultant CO films have been studied to understand the influence of processing parameters in the thermoelectric, electrical, optical, morphological, and structural properties. Films with a Cu2O single phase are formed when annealing at 225 °C, while CuO single phase films can be obtained at 375 °C. In between, both phases are obtained in proportions that depend on the film thickness and annealing time. The positive sign of the Seebeck coefficient (S), measured at room temperature (RT), confirms the p-type behavior of both oxides, showing values up to 1.2 mV·°C–1 and conductivity up to 2.9 (Ω·m)−1. A simple detector using Cu2O have been fabricated and tested with fast finger touch events.

Conceição, DS, Graça CAL, Ferreira DP, Ferraria AM, Fonseca IM, do Rego BAM, Teixeira ACSC, Ferreira VLF.  2017.  Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous and Mesoporous Materials. 253:203-214. AbstractWebsite

Mesoporous silica, SBA-15, decorated with different amounts of TiO2 (anatase) were prepared by a sol-gel method followed by hydrothermal treatment and calcination, in the presence of a soft template, copolymer Pluronic 123. Tetraethyl orthosilicate (TEOS) was used as the SiO2 precursor and commercially available TiO2 anatase nanoparticles as the supported photocatalyst. The materials were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), N2 adsorption-desorption isotherms, raman spectroscopy, ground state diffuse reflectance (GSDR), laser induced luminescence (LIL) and X-ray photoelectron spectroscopy (XPS). The zeta potentials of the pure SBA-15, TiO2/SBA-15 substrate and the commercial anatase sample were monitored through a complete range of pH values. All the nanomaterials developed in this work were studied in terms of their photoactivity in the UV range and in the visible range, separately. In the first case, hydroxyl radicals (OH) were confirmed to be the key active oxidizers in the photodegradation of the pesticide amicarbazone in aqueous medium. On the other hand, in the visible range, and following a dye sensitization process via a fluorescent rhodamine-like dye, two different mechanisms could be identified for the formation of the superoxide radical anion, O2−.

Matos, I, Bernardo M, Fonseca I.  2017.  Porous carbon: A versatile material for catalysis. Catalysis Today. 285:194-203. AbstractWebsite

Heterogeneous catalysis is an exciting field in constant development. New and improved catalysts that can both be effective and economical are always on demand. Activated carbons may well play an important role in this field, as they are a cheaper alternative while more environmentally benign. In this paper, a brief overview of the effort developed in the application of activated carbon as heterogeneous catalysts in various reactions is presented. Functionalised activated carbon has been used as catalyst for fine chemical reactions. Gas-phase reactions for NO, N2O and CO2 conversions were thoroughly studied using activated carbon as catalyst support. In situ characterization techniques proved to be valuable tools to understand carbon gasification mechanism.

Dias, D, Lapa N, Bernardo M, Godinho D, Fonseca I, Miranda M, Pinto F, Lemos F.  2017.  Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Management. 65:186-194. AbstractWebsite

Rice straw (RS), rice husk (RH) and polyethylene (PE) were blended and submitted to gasification and pyrolysis processes. The chars obtained were submitted to textural, chemical, and ecotoxic characterisations, towards their possible valorisation. Gasification chars were mainly composed of ashes (73.4–89.8wt%), while pyrolysis chars were mainly composed of carbon (53.0–57.6wt%). Silicon (Si) was the major mineral element in all chars followed by alkaline and alkaline-earth metal species (AAEMs). In the pyrolysis chars, titanium (Ti) was also a major element, as the feedstock blends contained high fractions of PE which was the main source of Ti. Gasification chars showed higher surface areas (26.9–62.9m2g−1) and some microporosity, attributed to porous silica. On the contrary, pyrolysis chars did not present a porous matrix, mainly due to their high volatile matter content. The gasification bed char produced with 100% RH, at 850°C, with O2 as gasification agent, was selected for further characterization. This char presented the higher potential to be valorised as adsorbent material (higher surface area, higher content of metal cations with exchangeable capacity, and lowest concentrations of toxic heavy metals). The char was submitted to an aqueous leaching test to assess the mobility of chemical species and the ecotoxic level for V. fischeri. It was observed that metallic elements were significantly retained in the char, which was attributed mainly to its alkaline character. This alkaline condition promoted some ecotoxicity level on the char eluate that was eliminated after the pH correction.

Cordeiro, T, Castiñeira C, Mendes D, Florence Danède, Sotomayor J, Fonseca IM, Gomes da Silva M, Paiva A, Barreiros S, Cardoso MM, Viciosa MT, Correia NT, Dionisio M.  2017.  Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics. 14:3164-3177., Number 9 AbstractWebsite
Sharipova, AA, Aidarova SB, Bekturganova NY, Tleuova A, Kerimkulova M, Yessimova O, Kairaliyeva T, Lygina O, Lyubchik S, Miller R.  2017.  Triclosan adsorption from model system by mineral sorbent diatomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 532:97-101. AbstractWebsite

Adsorption of model systems of triclosan by mineral sorbent diatomite is studied. The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the diatomite characterized using scanning electron microscopy and the amount of the adsorbed triclosan on the diatomite quantified by a mass balance. Adsorption isotherms were analyzed according to the linear/nonlinear form of Langmuir, Freundlich, Sips and Toth isotherm models isotherms, using AMPL software. It is shown that nonlinear Langmuir and Sips isotherm model provided suitable fitting results and no pronounced difference in adsorption efficiency between isotherms measured after 1, 2 and 3days adsorption was observed. Determined maximum adsorption capacity of diatomite towards triclosan qs is 140mg/g. Averaged calculated values of ΔG are −9.9 and −9.6kJ/mol for Langmuir and Sips models respectively. The negative sign of such values indicates spontaneous, physical in nature adsorption.

Castanheiro, JE, Fonseca IM, Ramos AM, Vital J.  2017.  Tungstophosphoric acid immobilised in SBA-15 as an efficient heterogeneous acid catalyst for the conversion of terpenes and free fatty acids. Microporous and Mesoporous Materials. 249:16-24. AbstractWebsite

Alkoxylation of α−pinene, β−pinene and limonene was performed in the presence of SBA-15-occluded tungstophosphoric acid (HPW). The HPW was immobilised in SBA-15 using the sol-gel method. The catalysts were characterised by N2 adsorption, FT-IR, Raman spectroscopy, X-Ray diffraction, ICP-AES and TEM. A series of catalysts with different heteropolyacid loadings ranging from 1.8 to 19.3 wt. % were prepared. PW4-SBA-15 (with 10.8 wt. %) exhibited the highest catalytic activity for the alkoxylation of α-pinene with ethanol. An approximately 53% selectivity to α-terpinyl ethyl ether was observed over the PW-SBA-15 catalysts. PW4-SBA-15 was also used as a catalyst for the alkoxylation of other terpenes, including β-pinene and limonene. The PW4-SBA-15 catalyst exhibited high catalytic stability for the alkoxylation of α-pinene with ethanol. PW4-SBA-15 was also used as a catalyst for the esterification of free fatty acids (i.e., palmitic, stearic and oleic acids) with ethanol. Good catalytic activity was observed for the PW4-SBA-15 catalyst with the different substrates used in the esterifications.

Lourenço, SC, Torres CAV, Nunes D, Duarte P, Freitas F, Reis MAM, Fortunato E, Moldão-Martins M, da Costa LB, Alves VD.  2017.  Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules. 104:1099-1106. AbstractWebsite

The potential of a bacterial exopolysaccharide named FucoPol, produced by the bacterium Enterobacter A47, as encapsulation matrix was explored. Spherical capsules with a smooth surface were produced by spray drying. The obtained microcapsules had average diameters ranging from 0.5 to 26.7μm and presented thin walls (thickness from 222 to 1094nm). The capsules were loaded with two bioactive compounds: gallic acid (GA) and oregano essential oil (OEO). Both bioactive materials were encapsulated in FucoPol particles, retaining their antioxidant activity after the drying process. Release studies showed that GA release in simulated gastric and intestinal fluids was faster than that of OEO, envisaging that the latter had established stronger interactions with the polymer matrix. These results suggest that FucoPol has a good potential for use as encapsulating material of bioactive compounds for application in several areas, including food, cosmetic or pharmaceutical products.

Bernardo, MMS, Madeira CAC, dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM.  2017.  Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars, Oct. Environmental Science and Pollution Research. 24:22698–22708., Number 28 AbstractWebsite

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5–81.5{%}), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g−1) and higher micropore content (V micro = 0.05 cm3 g−1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g−1) and caffeine (8.0 mg g−1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.

Dias, D, Lapa N, Bernardo M, Ribeiro W, Matos I, Fonseca I, Pinto F.  2018.  Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology. 266:139-150. AbstractWebsite

Blends of rice waste streams were submitted to co-gasification assays. The resulting chars (G1C and G2C) were characterized and used in Cr(III) removal assays from a synthetic solution. A Commercial Activated Carbon (CAC) was used for comparison purposes. The chars were non-porous materials mainly composed by ashes (68.3–92.6% w/w). The influences of adsorbent loading (solid/liquid ratio – S/L) and initial pH in Cr(III) removal were tested. G2C at a S/L of 5 mg L−1 and an initial pH of 4.50 presented an uptake capacity significantly higher than CAC (7.29 and 2.59 mg g−1, respectively). G2C was used in Cr(III) removal assays from an industrial wastewater with Cr(III) concentrations of 50, 100 and 200 mg L−1. Cr(III) removal by precipitation (uptake capacity ranging from 11.1 to 14.9 mg g−1) was more effective in G2C, while adsorption (uptake capacity of 16.1 mg g−1) was the main removal mechanism in CAC.

Godino-Ojer, M, Milla-Diez L, Matos I, Durán-Valle CJ, Bernardo M, Fonseca IM, Pérez Mayoral E.  2018.  Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem. 10:5215-5223., Number 22 AbstractWebsite

Abstract This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3-dihydro-1H-1,5-benzodiazepine – nitrogen heterocyclic compounds. Benzodiazepines and derivatives are fine chemicals exhibiting interesting therapeutic properties. Carbon materials have been barely investigated in the synthesis of this type of compounds. Two commercial carbon materials were selected exhibiting different textural properties: i) Norit RX3 (N) as microporous sample and ii) mesoporous xerogel (X), both used as supports of ZrO2 (Zr) and ZrO2/SO42− (SZr). The supported SZr led to higher conversion values and selectivities to the target benzodiazepine. Both chemical and textural properties influenced significantly the catalytic performance. Particularly relevant are the results concerning the non-sulfated samples, NZr and XZr, that were able to catalyze the reaction leading to the target benzodiazepine with high selectivity (up to 80 %; 2 h). These results indicated an important role of the carbon own surface functional groups, avoiding the use of H2SO4. Even very low amounts of SZr supported on carbon reveal high activity and selectivity. Therefore, the carbon materials herein reported can be considered an efficient and sustainable alternative bifunctional catalysts for the benzodiazepine synthesis.

Risso, R, Ferraz P, Meireles S, Fonseca I, Vital J.  2018.  Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Applied Catalysis A: General. 567:56-64. AbstractWebsite

Calcium oxide (CaO) catalysts derived from waste shells of egg, oyster and clam were prepared and used in the methanolysis of soybean oil. Eggshells were subjected to ultrasound irradiation and mollusc shells were subjected to calcination-hydration-calcination cycles to increase the surface area of CaO and improve its catalytic activity. The catalysts were characterized by XRD, TPD-CO2, TG-DSC, DLS and N2 adsorption, while the catalytic activity for the methanolysis of soybean oil was evaluated. Five hours of sonication reduced the CaO particle size by 34%, which resulted in a 56% increase in the activity. Two cycles of hydration-dehydration applied to the material obtained by calcination of oyster shells provided CaO with 27 m2 g−1. The transesterification rate was 2.5 times higher than that obtained with the untreated sample. After treatments, highly active CaO was obtained which indicates its enormous potential for biodiesel production. A kinetic model assuming the adsorption of methoxide anions on the surface of CaO particles was proposed.

Surra, E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota JP.  2018.  Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management. 72:193-205. AbstractWebsite

In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above 66% v/v. These results show that pre-treatment with H2O2, at room temperature, is a promising low cost way to valorize MCW through co-digestion with hOFMSW.