Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
2016
Bernardo, M, Rodrigues S, Lapa N, Matos I, Lemos F, Batista MKS, Carvalho AP, Fonseca I.  2016.  High efficacy on diclofenac removal by activated carbon produced from potato peel waste, Aug. International Journal of Environmental Science and Technology. 13:1989–2000., Number 8 AbstractWebsite

In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g−1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g−1, and Langmuir constants of 0.38 and 1.02 L mg−1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.

2018
Risso, R, Ferraz P, Meireles S, Fonseca I, Vital J.  2018.  Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Applied Catalysis A: General. 567:56-64. AbstractWebsite

Calcium oxide (CaO) catalysts derived from waste shells of egg, oyster and clam were prepared and used in the methanolysis of soybean oil. Eggshells were subjected to ultrasound irradiation and mollusc shells were subjected to calcination-hydration-calcination cycles to increase the surface area of CaO and improve its catalytic activity. The catalysts were characterized by XRD, TPD-CO2, TG-DSC, DLS and N2 adsorption, while the catalytic activity for the methanolysis of soybean oil was evaluated. Five hours of sonication reduced the CaO particle size by 34%, which resulted in a 56% increase in the activity. Two cycles of hydration-dehydration applied to the material obtained by calcination of oyster shells provided CaO with 27 m2 g−1. The transesterification rate was 2.5 times higher than that obtained with the untreated sample. After treatments, highly active CaO was obtained which indicates its enormous potential for biodiesel production. A kinetic model assuming the adsorption of methoxide anions on the surface of CaO particles was proposed.