Cordeiro, T, Santos AFM, Nunes G, Cunha G, Sotomayor JC, Fonseca IM, Florence Danède, Dias CJ, Cardoso MM, Correia NT, Viciosa TM, Dionísio M.
2016.
Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixes. The Journal of Physical Chemistry C. 120:14390-14401., Number 26
AbstractThe pharmaceutical drug naproxen was loaded in three different silica hosts with pore diameters of 2.4 (MCM), 3.2 (MCM), and 5.9 nm (SBA), respectively: napMCM\_2.4 nm, napMCM\_3.2 nm, and napSBA\_5.9 nm. To access the guest physical state in the prepared composites, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared spectroscopy were used. The different techniques provided complementary information on a molecular population that was revealed to be distributed among different environments, namely the pore core, the inner pore wall, and the outer surface. It was found that naproxen is semicrystalline in the higher pore size matrix being able to crystallize inside pores; after melting it undergoes full amorphization. In the case of the lower pore size matrix, naproxen crystallizes outside pores due to an excess of filling while most of the remaining fraction is incorporated inside the pores as amorphous. Crystallinity in these two composites was observed by the emergence of the Bragg peaks in the XRD analysis, whereas for napMCM\_3.2 nm only the amorphous halo was detected. The latter only exhibits the step due to the glass transition by DSC remaining stable as amorphous at least for 12 months. The glass transition in the three composites is abnormally broad, shifting to higher temperatures as the pore size decreases, coherent with the slowing down of molecular mobility as probed by dielectric relaxation spectroscopy. For napSBA\_5.9 nm the dielectric response was deconvoluted in two processes: a hindered surface (S-) process due to molecules interacting with the inner pore wall and a faster α-relaxation associated with the dynamic glass transition due to molecules relaxing in the pore core, which seems a manifestation of true confinement effects. The drug incorporation inside a nanoporous matrix, mainly in 3.2 nm pores, was revealed to be a suitable strategy to stabilize the highly crystallizable drug naproxen in the amorphous/supercooled state and to control its release from the silica matrix, allowing full delivery after 90 min in basic media.
Nogueira, M, Matos I, Bernardo M, Pinto F, Lapa N, Surra E, Fonseca I.
2019.
Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. C—Journal of Carbon Research. 5, Number 4
AbstractA char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.
Mestre, AS, Nabiço A, Figueiredo PL, Pinto ML, Santos SMCS, Fonseca IM.
2016.
Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal. 286:538-548.
AbstractClofibric acid is the metabolite and active principle of blood lipid regulators, it represents the class of acidic pharmaceuticals, and is one of the most persistent drug residues detected in the aquatic environment worldwide. This interdisciplinary work evaluates the effect of solution pH and water hardness in clofibric acid adsorption onto commercial activated carbons. Kinetic and equilibrium assays revealed that the highest clofibric acid removal efficiencies (>70%) were attained at pH 3, and that at pH 8 water hardness degree plays a fundamental role in the adsorption process. In hard water at pH 8 the removal efficiency values increased by 22 or 46% points depending on the carbon sample. Adsorbents’ textural properties also affect the adsorption process since for the microporous sample (CP) the increase of water hardness has a great influence in kinetic and equilibrium data, while for the micro+mesoporous carbon (VP) the variation of the water hardness promoted less significant changes. At pH 3 the increase of water hardness leads to changes in the adsorption mechanism of clofibric acid onto CP carbon signaled by a transition from an S-type to an L-type curve. At pH 8 the change from deionized water to hard water doubles the maximum adsorption capacity of sample CP (101.7mgg−1 vs 211.9mgg−1, respectively). The adsorption enhancement, with water hardness under alkaline conditions, was reasoned in terms of calcium complexation with clofibrate anion exposed by molecular modeling and conductivity studies. Ca2+ complexation by other acidic organic compounds may also occur, and should be considered, since it can play a fundamental role in improved design of water treatment processes employing activated carbons.
Surra, E, Nogueira MC, Bernardo M, Lapa N, Esteves I, Fonseca I.
2019.
New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Management. 94:136-145.
AbstractTwo activated carbons (ACs) were prepared by physical activation of Maize Cob Waste (MCW) with CO2, during 2 and 3 h (MCW(PA)2h and MCW(PA)3h, respectively). Two other ACs were prepared by chemical activation: a) MCW(LD) – MCW was impregnated with anaerobic liquid digestate (LD) and carbonized under N2 atmosphere; and b) CAR-MCW(LD) – previously carbonized MCW was impregnated with LD and carbonized under N2 atmosphere. All ACs were fully characterized for textural and chemical properties, and then used in dynamic H2S removal assays from real biogas samples. Regarding H2S removal, the ACs that were physically activated behaved much better than the impregnated ones: MCW(PA)3h and MCW(PA)2h showed H2S uptake capacities of 15.5 and 0.65 mg g−1, respectively, while MCW(LD) and CAR-MCW(LD) showed values of 0.47 and 0.25 mg g−1, respectively. This may indicate that textural properties (surface area and microporosity) are more important than mineral content in H2S removal. Effectively, both surface area and micropore volume were much higher for the samples of MCW(PA)3h (SBET = 820 m2 g−1 and Vmicro = 0.32 cm3 g−1) and MCW(PA)2h (SBET = 630 m2 g−1 and Vmicro = 0.21 cm3 g−1) than for the ACs that were chemically activated (SBET = 38.0 m2 g−1 and Vmicro = 0.01 cm3 g−1 for MCW(LD); SBET = 8.0 m2 g−1 and Vmicro = 0.01 cm3 g−1 for CAR-MCW(LD)). High oxygen content in MCW(PA)3h favoured the catalytic oxidation reaction of H2S, promoting its removal. The use of MCW as precursor and LD as activating agent of the ACs may contribute for the integrated management of maize wastes and to diversify the applications of anaerobic digestate.
Agostinho, DAS, Paninho AI, Cordeiro T, Nunes AVM, Fonseca IM, Pereira C, Matias A, Ventura MG.
2020.
Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics. 253:123290.
AbstractThis work reports the synthesis of kappa-carrageenan aerogels using different dissolution and crosslinking media in order to evaluate its effects on the textural properties of the matrixes and further on the drug loading and release performance. The different aerogel samples were produced through the dissolution of the biopolymer in water with addition of potassium salts as crosslinking agents and, in two different ionic liquids (ILs) derived from imidazolium ion, being further dried with supercritical CO2. The samples were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Nitrogen Adsorption-Desorption Analysis, Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC). The synthesized samples presented surface areas similar to the carrageenan aerogels being their structure constituted mainly by meso and macropores. The absence of ionic liquid in samples was demonstrated by DSC analysis and was corroborated by the cytotoxicity assays which revealed that cellular viability in Caco-2 cells was preserved. Tetracycline was used as a model drug and loaded in two of the prepared aerogels samples. The release experiments were performed with the composites to test in vitro drug release at physiologic pH. With a higher macroporosity, the kappa-carrageenan aerogel prepared by dissolution into ionic liquid showed a higher loading capacity than the one prepared by dissolution into water and a slightly higher release rate. The matrixes were considered to present a good potential to be used as biocompatible carriers on drug controlled delivery.
Godinho, D, Nogueira M, Bernardo M, Dias D, Lapa N, Fonseca I, Pinto F.
2019.
Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes, Aug. Environmental Science and Pollution Research. 26:22723–22735., Number 22
AbstractThe aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice huskþinspace}+þinspace}corn cob (biochar 50CC) and rice huskþinspace}+þinspace}eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABETþinspace}=þinspace}63–144 m2 g−1), but a strong alkaline character, promoted by a high content of mineral matter (59.8{%} w/w of ashes for 50CC biochar and 81.9{%} w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100–500 mL g−1), contact time (1–120 h), and initial Cr(III) concentration (10–150 mg L−1). High Cr(III) removal percentages (around 100{%}) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g−1), for the initial pH 5 and initial Cr concentration of 50 mg L−1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9{%}) and the highest uptake capacity (6.87 mg g−1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27{%} with a maximum uptake capacity of 2.58 mg g−1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.
Madureira, J, Melo R, Verde SC, Matos I, Bernardo M, Noronha JP, Marga{\c c}a FMA, Fonseca IM.
2018.
Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology. 77:456–466., Number 2: IWA Publishing
AbstractThe adsorption of four phenolic compounds (gallic acid, protocatechuic acid, vanillic acid and syringic acid) is investigated using a synthesized mesoporous carbon on both single and multi-component synthetic solutions. Some correlation of the adsorption capacity of the carbon and the nature of adsorbate could be made, except for gallic acid whose concentration decrease seems to be not exclusively due to adsorption but also to polymerization reaction. In the multi-component mixture, negative effects in the adsorption capacity are observed probably due to competition for the active centers of the adsorbent surface. In desorption studies, ethanol presents better performance than water and acetonitrile. Vanillic acid is the compound with the higher adsorption and interestingly it is then possible to desorb a relatively high amount of it from the adsorbent, which may represent a possibility for a selective recovery of vanillic acid. These results present a potential way to treat the wastewater from the cork industry.
Bernardo, MMS, Madeira CAC, dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM.
2017.
Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars, Oct. Environmental Science and Pollution Research. 24:22698–22708., Number 28
AbstractThis work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5–81.5{%}), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g−1) and higher micropore content (V micro = 0.05 cm3 g−1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g−1) and caffeine (8.0 mg g−1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.
Lourenço, SC, Torres CAV, Nunes D, Duarte P, Freitas F, Reis MAM, Fortunato E, Moldão-Martins M, da Costa LB, Alves VD.
2017.
Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules. 104:1099-1106.
AbstractThe potential of a bacterial exopolysaccharide named FucoPol, produced by the bacterium Enterobacter A47, as encapsulation matrix was explored. Spherical capsules with a smooth surface were produced by spray drying. The obtained microcapsules had average diameters ranging from 0.5 to 26.7μm and presented thin walls (thickness from 222 to 1094nm). The capsules were loaded with two bioactive compounds: gallic acid (GA) and oregano essential oil (OEO). Both bioactive materials were encapsulated in FucoPol particles, retaining their antioxidant activity after the drying process. Release studies showed that GA release in simulated gastric and intestinal fluids was faster than that of OEO, envisaging that the latter had established stronger interactions with the polymer matrix. These results suggest that FucoPol has a good potential for use as encapsulating material of bioactive compounds for application in several areas, including food, cosmetic or pharmaceutical products.