Madureira, J, Melo R, Verde SC, Matos I, Bernardo M, Noronha JP, Marga{\c c}a FMA, Fonseca IM.
2018.
Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology. 77:456–466., Number 2: IWA Publishing
AbstractThe adsorption of four phenolic compounds (gallic acid, protocatechuic acid, vanillic acid and syringic acid) is investigated using a synthesized mesoporous carbon on both single and multi-component synthetic solutions. Some correlation of the adsorption capacity of the carbon and the nature of adsorbate could be made, except for gallic acid whose concentration decrease seems to be not exclusively due to adsorption but also to polymerization reaction. In the multi-component mixture, negative effects in the adsorption capacity are observed probably due to competition for the active centers of the adsorbent surface. In desorption studies, ethanol presents better performance than water and acetonitrile. Vanillic acid is the compound with the higher adsorption and interestingly it is then possible to desorb a relatively high amount of it from the adsorbent, which may represent a possibility for a selective recovery of vanillic acid. These results present a potential way to treat the wastewater from the cork industry.
Matos, I, Bernardo M, Fonseca I.
2017.
Porous carbon: A versatile material for catalysis. Catalysis Today. 285:194-203.
AbstractHeterogeneous catalysis is an exciting field in constant development. New and improved catalysts that can both be effective and economical are always on demand. Activated carbons may well play an important role in this field, as they are a cheaper alternative while more environmentally benign. In this paper, a brief overview of the effort developed in the application of activated carbon as heterogeneous catalysts in various reactions is presented. Functionalised activated carbon has been used as catalyst for fine chemical reactions. Gas-phase reactions for NO, N2O and CO2 conversions were thoroughly studied using activated carbon as catalyst support. In situ characterization techniques proved to be valuable tools to understand carbon gasification mechanism.
Mestre, AS, Nabiço A, Figueiredo PL, Pinto ML, Santos SMCS, Fonseca IM.
2016.
Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal. 286:538-548.
AbstractClofibric acid is the metabolite and active principle of blood lipid regulators, it represents the class of acidic pharmaceuticals, and is one of the most persistent drug residues detected in the aquatic environment worldwide. This interdisciplinary work evaluates the effect of solution pH and water hardness in clofibric acid adsorption onto commercial activated carbons. Kinetic and equilibrium assays revealed that the highest clofibric acid removal efficiencies (>70%) were attained at pH 3, and that at pH 8 water hardness degree plays a fundamental role in the adsorption process. In hard water at pH 8 the removal efficiency values increased by 22 or 46% points depending on the carbon sample. Adsorbents’ textural properties also affect the adsorption process since for the microporous sample (CP) the increase of water hardness has a great influence in kinetic and equilibrium data, while for the micro+mesoporous carbon (VP) the variation of the water hardness promoted less significant changes. At pH 3 the increase of water hardness leads to changes in the adsorption mechanism of clofibric acid onto CP carbon signaled by a transition from an S-type to an L-type curve. At pH 8 the change from deionized water to hard water doubles the maximum adsorption capacity of sample CP (101.7mgg−1 vs 211.9mgg−1, respectively). The adsorption enhancement, with water hardness under alkaline conditions, was reasoned in terms of calcium complexation with clofibrate anion exposed by molecular modeling and conductivity studies. Ca2+ complexation by other acidic organic compounds may also occur, and should be considered, since it can play a fundamental role in improved design of water treatment processes employing activated carbons.