Publications

Export 8 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Castanheiro, JE, Vital J, Fonseca IM, Ramos AM.  2019.  Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today. AbstractWebsite

Dodecamolydbophosphoric acid (HPMo) immobilized on USY zeolite was used as a catalyst for the acetalization of glycerol with pentanal at 70 °C. Catalysts were prepared with different amounts of heteropolyacid, and the most active sample was the HPMo2@Y catalyst (1.1 wt.%). The products of glycerol acetalization with pentanal were (2-butyl-1,3-dioxolan-4-yl)methanol, a five-member ring compound, and 2-butyl-1,3-dioxan-5-ol, a six-member ring compound. Good values of selectivity for the five-member ring compound (80–85%) were obtained with all materials. The reaction conditions were optimized using HPMo2@Y as a catalyst. The optimal conditions were determined to be 70 °C reaction temperature with 0.3 g catalyst and a 1:2.5 M ratio of glycerol to pentanal. The catalytic stability of HPMo2@Y was studied. The acetalization of glycerol with pentanal was performed using the same sample. High catalytic activity for HPMo2@Y was observed.

Castanheiro, JE, Vital J, Fonseca IM, Ramos AM.  2020.  Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today. 346:76-80. AbstractWebsite

Dodecamolydbophosphoric acid (HPMo) immobilized on USY zeolite was used as a catalyst for the acetalization of glycerol with pentanal at 70 °C. Catalysts were prepared with different amounts of heteropolyacid, and the most active sample was the HPMo2@Y catalyst (1.1 wt.%). The products of glycerol acetalization with pentanal were (2-butyl-1,3-dioxolan-4-yl)methanol, a five-member ring compound, and 2-butyl-1,3-dioxan-5-ol, a six-member ring compound. Good values of selectivity for the five-member ring compound (80–85%) were obtained with all materials. The reaction conditions were optimized using HPMo2@Y as a catalyst. The optimal conditions were determined to be 70 °C reaction temperature with 0.3 g catalyst and a 1:2.5 M ratio of glycerol to pentanal. The catalytic stability of HPMo2@Y was studied. The acetalization of glycerol with pentanal was performed using the same sample. High catalytic activity for HPMo2@Y was observed.

Castanheiro, JE, Fonseca IM, Ramos AM, Vital J.  2017.  Tungstophosphoric acid immobilised in SBA-15 as an efficient heterogeneous acid catalyst for the conversion of terpenes and free fatty acids. Microporous and Mesoporous Materials. 249:16-24. AbstractWebsite

Alkoxylation of α−pinene, β−pinene and limonene was performed in the presence of SBA-15-occluded tungstophosphoric acid (HPW). The HPW was immobilised in SBA-15 using the sol-gel method. The catalysts were characterised by N2 adsorption, FT-IR, Raman spectroscopy, X-Ray diffraction, ICP-AES and TEM. A series of catalysts with different heteropolyacid loadings ranging from 1.8 to 19.3 wt. % were prepared. PW4-SBA-15 (with 10.8 wt. %) exhibited the highest catalytic activity for the alkoxylation of α-pinene with ethanol. An approximately 53% selectivity to α-terpinyl ethyl ether was observed over the PW-SBA-15 catalysts. PW4-SBA-15 was also used as a catalyst for the alkoxylation of other terpenes, including β-pinene and limonene. The PW4-SBA-15 catalyst exhibited high catalytic stability for the alkoxylation of α-pinene with ethanol. PW4-SBA-15 was also used as a catalyst for the esterification of free fatty acids (i.e., palmitic, stearic and oleic acids) with ethanol. Good catalytic activity was observed for the PW4-SBA-15 catalyst with the different substrates used in the esterifications.

Conceição, DS, Graça CAL, Ferreira DP, Ferraria AM, Fonseca IM, do Rego BAM, Teixeira ACSC, Ferreira VLF.  2017.  Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous and Mesoporous Materials. 253:203-214. AbstractWebsite

Mesoporous silica, SBA-15, decorated with different amounts of TiO2 (anatase) were prepared by a sol-gel method followed by hydrothermal treatment and calcination, in the presence of a soft template, copolymer Pluronic 123. Tetraethyl orthosilicate (TEOS) was used as the SiO2 precursor and commercially available TiO2 anatase nanoparticles as the supported photocatalyst. The materials were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), N2 adsorption-desorption isotherms, raman spectroscopy, ground state diffuse reflectance (GSDR), laser induced luminescence (LIL) and X-ray photoelectron spectroscopy (XPS). The zeta potentials of the pure SBA-15, TiO2/SBA-15 substrate and the commercial anatase sample were monitored through a complete range of pH values. All the nanomaterials developed in this work were studied in terms of their photoactivity in the UV range and in the visible range, separately. In the first case, hydroxyl radicals (OH) were confirmed to be the key active oxidizers in the photodegradation of the pesticide amicarbazone in aqueous medium. On the other hand, in the visible range, and following a dye sensitization process via a fluorescent rhodamine-like dye, two different mechanisms could be identified for the formation of the superoxide radical anion, O2−.

Cordeiro, T, Castiñeira C, Mendes D, Florence Danède, Sotomayor J, Fonseca IM, Gomes da Silva M, Paiva A, Barreiros S, Cardoso MM, Viciosa MT, Correia NT, Dionisio M.  2017.  Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics. 14:3164-3177., Number 9 AbstractWebsite
n/a
Cordeiro, T, Santos AFM, Nunes G, Cunha G, Sotomayor JC, Fonseca IM, Florence Danède, Dias CJ, Cardoso MM, Correia NT, Viciosa TM, Dionísio M.  2016.  Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixes. The Journal of Physical Chemistry C. 120:14390-14401., Number 26 AbstractWebsite

The pharmaceutical drug naproxen was loaded in three different silica hosts with pore diameters of 2.4 (MCM), 3.2 (MCM), and 5.9 nm (SBA), respectively: napMCM\_2.4 nm, napMCM\_3.2 nm, and napSBA\_5.9 nm. To access the guest physical state in the prepared composites, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared spectroscopy were used. The different techniques provided complementary information on a molecular population that was revealed to be distributed among different environments, namely the pore core, the inner pore wall, and the outer surface. It was found that naproxen is semicrystalline in the higher pore size matrix being able to crystallize inside pores; after melting it undergoes full amorphization. In the case of the lower pore size matrix, naproxen crystallizes outside pores due to an excess of filling while most of the remaining fraction is incorporated inside the pores as amorphous. Crystallinity in these two composites was observed by the emergence of the Bragg peaks in the XRD analysis, whereas for napMCM\_3.2 nm only the amorphous halo was detected. The latter only exhibits the step due to the glass transition by DSC remaining stable as amorphous at least for 12 months. The glass transition in the three composites is abnormally broad, shifting to higher temperatures as the pore size decreases, coherent with the slowing down of molecular mobility as probed by dielectric relaxation spectroscopy. For napSBA\_5.9 nm the dielectric response was deconvoluted in two processes: a hindered surface (S-) process due to molecules interacting with the inner pore wall and a faster α-relaxation associated with the dynamic glass transition due to molecules relaxing in the pore core, which seems a manifestation of true confinement effects. The drug incorporation inside a nanoporous matrix, mainly in 3.2 nm pores, was revealed to be a suitable strategy to stabilize the highly crystallizable drug naproxen in the amorphous/supercooled state and to control its release from the silica matrix, allowing full delivery after 90 min in basic media.

Cordeiro, T, Paninho AB, Bernardo M, Matos I, Pereira CV, Serra AT, Matias A, Ventura MG.  2020.  Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics. 239:121973. AbstractWebsite

The work reports the impregnation of naproxen into locust bean gum mesoporous matrixes with different textural properties. The matrixes were prepared through the dissolution of the biopolymer in water and in two ionic liquids (ILs): [bmim][Cl] and [C2OHmim][Cl] and dried with scCO2. The poor water-soluble pharmaceutical drug naproxen was loaded into the matrixes and the composites were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy and by differential scanning calorimetry; the results were compared with neat ILs and drug. The naproxen release from the matrixes was attempted at pH 7.4. Sustained release of naproxen in the different composites occurs, and consequently the naproxen release has lower rates compared with neat crystalline naproxen dissolution. Nevertheless, it was possible to observe small differences on release profiles for the studied composites. The higher release rate was observed for the composite where [bmim][Cl] was used as solvent, for which the calorimetric analysis revealed full amorphization of the incorporated drug. Cytotoxicity assays reveal that cellular viability in Caco-2 cells is preserved. This fact allied with the biocompatibility of locust bean gum allow for the composites potential application as naproxen controlled/sustained delivery systems with higher drug bioavailability achieved through naproxen amorphization.

Correa, CR, Bernardo M, Ribeiro RPPL, Esteves IAAC, Kruse A.  2017.  Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. Journal of Analytical and Applied Pyrolysis. 124:461-474. AbstractWebsite

Digestate from a biogas plant that uses solely biomass for biogas production was used as precursor material for the production of activated carbon as an alternative to increase its added value. The digestate was converted into hydrochar by hydrothermal carbonization varying the temperature (190–250°C), residence time (3 and 6h), and pH (5 and 7). Temperature followed by residence time had the strongest influence on the chemical composition and thermal stability of the hydrochars. A significant effect of the pH was not observed. The hydrochars were chemically activated to enhance the surface area and use them as activated carbon. As a consequence, the surface areas increased from 8 to 14m2/g (hydrochars) to 930–1351m2/g (activated carbons). Furthermore, large micropore volumes were measured (0.35–0.50cm3/g). The activated carbons were studied as adsorbents in gas phase applications, showing that the product of digestate is a very effective adsorbent for carbon dioxide (CO2). Especially the activated carbon obtained from the hydrochar produced at 250°C for 6h, which adsorbed 8.80mol CO2/kg at 30°C and 14.8bar. Additionally, the activated carbons showed a stronger affinity towards CO2 compared to methane (CH4), which makes this material suitable for the upgrading of raw biogas to biomethane.