Publications

Export 5 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Afonso, D, Ribeiro AFG, Araújo P, Vital J, Madeira LM.  2018.  Phenol in Mixed Acid Benzene Nitration Systems. Industrial & Engineering Chemistry Research. 57:15942-15953., Number 46 AbstractWebsite
n/a
Agostinho, DAS, Paninho AI, Cordeiro T, Nunes AVM, Fonseca IM, Pereira C, Matias A, Ventura MG.  2020.  Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics. 253:123290. AbstractWebsite

This work reports the synthesis of kappa-carrageenan aerogels using different dissolution and crosslinking media in order to evaluate its effects on the textural properties of the matrixes and further on the drug loading and release performance. The different aerogel samples were produced through the dissolution of the biopolymer in water with addition of potassium salts as crosslinking agents and, in two different ionic liquids (ILs) derived from imidazolium ion, being further dried with supercritical CO2. The samples were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Nitrogen Adsorption-Desorption Analysis, Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC). The synthesized samples presented surface areas similar to the carrageenan aerogels being their structure constituted mainly by meso and macropores. The absence of ionic liquid in samples was demonstrated by DSC analysis and was corroborated by the cytotoxicity assays which revealed that cellular viability in Caco-2 cells was preserved. Tetracycline was used as a model drug and loaded in two of the prepared aerogels samples. The release experiments were performed with the composites to test in vitro drug release at physiologic pH. With a higher macroporosity, the kappa-carrageenan aerogel prepared by dissolution into ionic liquid showed a higher loading capacity than the one prepared by dissolution into water and a slightly higher release rate. The matrixes were considered to present a good potential to be used as biocompatible carriers on drug controlled delivery.

Sharipova, AA, Aidarova SB, Bekturganova NY, Tleuova A, Kerimkulova M, Yessimova O, Kairaliyeva T, Lygina O, Lyubchik S, Miller R.  2017.  Triclosan adsorption from model system by mineral sorbent diatomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 532:97-101. AbstractWebsite

Adsorption of model systems of triclosan by mineral sorbent diatomite is studied. The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the diatomite characterized using scanning electron microscopy and the amount of the adsorbed triclosan on the diatomite quantified by a mass balance. Adsorption isotherms were analyzed according to the linear/nonlinear form of Langmuir, Freundlich, Sips and Toth isotherm models isotherms, using AMPL software. It is shown that nonlinear Langmuir and Sips isotherm model provided suitable fitting results and no pronounced difference in adsorption efficiency between isotherms measured after 1, 2 and 3days adsorption was observed. Determined maximum adsorption capacity of diatomite towards triclosan qs is 140mg/g. Averaged calculated values of ΔG are −9.9 and −9.6kJ/mol for Langmuir and Sips models respectively. The negative sign of such values indicates spontaneous, physical in nature adsorption.

Sharipova, AA, Aidarova SB, Bekturganova NE, Tleuova A, Schenderlein M, Lygina O, Lyubchik S, Miller R.  2016.  Triclosan as model system for the adsorption on recycled adsorbent materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 505:193-196. AbstractWebsite

The adsorption of triclosan as model system was studied to qualify activated carbon sorbents recycled from gas masks (civilian gas mask GP5). The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the activated carbon characterized by scanning electron microscopy, and the amount of the adsorbed triclosan on the activated carbon quantified by a mass balance method. Experimental isotherms were fitted by Langmuir, Freundlich and Sips adsorption models. It was obtained that the contact time is a crucial sorption parameter that provides information on the optimum adsorption efficiency. It was shown that the maximum efficiency of GP5 (88%) is obtained after 10days of adsorption at a maximal concentration of triclosan and carbon loading 1mg/l. No significant adsorption efficiency differences were measured after 5 and 10days of adsorption. The non-linear Sips isotherm, a combined Freundlich–Langmuir model, provides suitable fitting results. The observed remarkable adsorption capacity of activated carbon (GP5) towards triclosan adsorption (∼85mg/g) makes it a viable solution for wastewater treatment.

Lourenço, SC, Torres CAV, Nunes D, Duarte P, Freitas F, Reis MAM, Fortunato E, Moldão-Martins M, da Costa LB, Alves VD.  2017.  Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules. 104:1099-1106. AbstractWebsite

The potential of a bacterial exopolysaccharide named FucoPol, produced by the bacterium Enterobacter A47, as encapsulation matrix was explored. Spherical capsules with a smooth surface were produced by spray drying. The obtained microcapsules had average diameters ranging from 0.5 to 26.7μm and presented thin walls (thickness from 222 to 1094nm). The capsules were loaded with two bioactive compounds: gallic acid (GA) and oregano essential oil (OEO). Both bioactive materials were encapsulated in FucoPol particles, retaining their antioxidant activity after the drying process. Release studies showed that GA release in simulated gastric and intestinal fluids was faster than that of OEO, envisaging that the latter had established stronger interactions with the polymer matrix. These results suggest that FucoPol has a good potential for use as encapsulating material of bioactive compounds for application in several areas, including food, cosmetic or pharmaceutical products.