Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
Paiva, T, Echeverria C, Godinho MH, Almeida PL, Corvo M.  2019.  On the influence of imidazolium ionic liquids on cellulose derived polymers. European Polymer Journal. : Elsevier AbstractWebsite

The demand for better cellulose solvents has driven the search for new and improved materials to enable the processing of this polysaccharide. Ionic liquids have been debated for a long time as interesting alternatives, but the molecular details on the solubilization mechanism have been a matter of controversy. Herein, for the first time, the structure and dynamics of hydroxypropylcellulose (HPC) liquid crystal solutions were probed in the presence of imidazolium ionic liquids (ILs), conjugating rheological measurements with magnetic resonance spectroscopy. This study provides a characterization of the solutions macroscopic behaviour, where the liquid crystalline (LC) properties were maintained. Using ILs with different side chain lengths, the influence of the hydrophobic IL domain in the solvation abilities of ILs towards a cellulose derived polymer was accessed, providing experimental evidence on these interactions.

Ribeiro, SO, Granadeiro CM, Almeida PL, Pires J, Capel-Sanchez MC, Campos-Martin JM, Gago S, de Castro B, Balula SS.  2019.  Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems, {AUG 1}. Catalysis Today. 333:226-236., Number {SI} AbstractWebsite

Strategic polyoxometalate Keggin-type structural modification was performed to increase the oxidative catalytic performance to desulfurize model and real diesels. The most active lacunar structure {[}PW11O39](7-) (PW11) showed to complete desulfurize a simulated diesel after 60 min at 70 degrees C. Its application as homogeneous catalyst using a biphasic system 1: 1 diesel/acetonitrile needed to use an excess of oxidant (ratio H2O2/S = 8). The immobilization of the PW11 on amine-functionalized SBA-15 supports originated two heterogeneous catalysts PW11@aptesSBA-15 and PW11@tbaSBA-15. The best results were attained with the PW11@aptesSBA-15 catalyst showing identical oxidative desulfurization performance as the homogeneous analogue. As advantage, this heterogeneous catalyst promotes the complete desulfurization of simulated diesel using a solvent-free system, i.e. without the need of acetonitrile use. On the other hand, the same desulfurization efficiency could be achieved using half the amount of oxidant (H2O2/S = 4). The oxidative desulfurization of the real diesel achieved a remarkable 83.4% of efficiency after just 2 h. The recycling capacity of PW11@aptesSBA-15 catalyst was confirmed for eight consecutive cycles using the biphasic and the solvent-free systems. Its stability investigation demonstrates to be higher under the solvent-free system than the biphasic system, without practically any occurrence of PW11 leaching in the first case. On the other hand, the Venturello peroxocomplex {[}PO4\{W(O-2)(2)\}(4)](3-), recognized as active intermediate in the homogeneous biphasic system, was not identified in the heterogeneous catalytic systems.