Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Mirante, F, Alves AC, Juliao D, Almeida PL, Gago S, Valenca R, Ribeiro JC, de Castro B, Granadeiro CM, Balula SS.  2020.  Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels, {JAN 1}. Fuel. 259:116213. AbstractWebsite

A novel composite has been prepared through the immobilization of the Keggin sandwich-type {[}Sm (PMo11O39)(2)](11-) anion (SmPOM) on large-pore silica spheres previously functionalized with trimethylammonium groups (TMA). The resulting SmPOM@TMA-LPMS material has been evaluated as heterogeneous catalyst in a biphasic desulfurization 1:1 diesel/extraction solvent system using H2O2 as oxidant. Preliminary experiments were conducted with different extraction solvents, acetonitrile and {[}BMIM]PF6 ionic liquid. The optimized extractive and catalytic oxidative desulfurization system (ECODS) with {[}BMIM]PF6 was able to reach complete sulfur removal from a model diesel containing 2100 ppm S in just 60 min (10 min of initial extraction + 50 min of catalytic step). The reutilization of catalyst and extraction phase has been successfully performed without loss of desulfurization efficiency in consecutive cycles, turning the process more sustainable and cog-effective. The remarkable results with simulated diesel have motivated the application of the catalyst in the desulfurization of untreated real diesel and 74% of efficiency was achieved after only 2 h for three consecutive cycles.

2019
Ribeiro, SO, Granadeiro CM, Almeida PL, Pires J, Valenca R, Campos-Martin JM, Ribeiro JC, de Castro B, Balula SS.  2019.  Effective Zinc-Substituted Keggin Composite To Catalyze the Removal of Sulfur from Real Diesels under a Solvent-Free System, {OCT 9}. Industrial & Engineering Chemistry Research. 58:18540-18549., Number {40} AbstractWebsite

{The Keggin phosphotungstate (PW12) and its zinc derivative (PW11Zn) were tested as oxidative catalysts for desulfurization processes using simulated and real diesels. These compounds were used as homogeneous catalysts, while the corresponding SBA-15 composites were used as heterogeneous catalysts. The comparison of their catalytic performance demonstrated that the zinc-substituted polyoxo-metalate is more efficient than the plenary PW12 structure. Additionally, using the heterogeneous PW11Zn@aptesSBA-15, the sustainability and catalytic efficiency was largely improved, allowing the total sulfur removal from model diesel after 1 h using a small amount of oxidant (H2O2/S = 4) under an oxidative solvent-free system. The desulfurization of real diesels was performed under similar conditions, achieving 87.8% of efficiency using the PW11Zn@aptesSBA-15 catalyst. Furthermore, the catalyst maintained its activity over consecutive desulfurization cycles. The cost-effective operational conditions achieved with PW11Zn@aptesSBA-15 turn this into a promising material to be used in an industrial scale to treat diesel.}

2017
Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  DEVELOPMENTS IN THE REACTIVITY OF 2-METHYL IMIDAZOLIUM SALTS. The Journal of Organic Chemistry. 82(12):6232–6241.: American Chemical Society AbstractWebsite

Unexpected and unusual reactivity of 2-methylimidazolium salts toward aryl-N-sulfonylimines and aryl aldehydes is here reported. Upon reaction with aryl-N-sulfonylimines, the addition product, arylethyl-2-imidazolium-1-tosylamide (3), is formed with moderate to good yields, while upon reaction with aldehydes, the initial addition product (6) observed in NMR and HPLC–MS experimental analysis is postulated by us as an intermediate to the final conversion to carboxylic acids. Studies in the presence and absence of molecular oxygen allow us to conclude that the imidazolium salts is crucial for the oxidation. A detailed mechanistic study was carried out to provide insights regarding this unexpected reactivity.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  Developments in the Reactivity of 2-Methylimidazolium Salts. The Journal of organic chemistry. 82:6232–6241., Number 12: American Chemical Society Abstract
n/a
2016
Granadeiro, CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Van Deun R, de Castro B, Balula SS.  2016.  A novel red emitting material based on polyoxometalate@ periodic mesoporous organosilica. Microporous and Mesoporous Materials. 234:248-256. AbstractWebsite

The first lanthanopolyoxometalate-supported bifunctional periodic mesoporous organosilica (BPMO) composite is here reported. The incorporation of decatunsgstoeuropate anions ([Eu(W5O18)2]9−) within the porous channels of an ethylene-bridged TMAPS-functionalized BPMO produced a luminescent material exhibiting a strong red emission under UV irradiation. Photoluminescence studies showed an efficient energy transfer process to the lanthanide emitting center in the material (antenna effect). A significant change in the coordination environment of Eu3+ ions was observed after its incorporation into the TMAPS-functionalized material. The possible reason for this is discussed within the paper.

2015
Ferreira, S, Carvalho J, Valente JF, Corvo M, Cabrita EJ, Sousa F, Queiroz JA, Cruz C.  2015.  Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification. J Chromatogr B Analyt Technol Biomed Life Sci. 1006:47-58. AbstractWebsite

The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions.

Ferreira, S, Carvalho J, Valente JFA, Corvo MC, Cabrita EJ, Sousa F, Queiroz JA, Cruz C.  2015.  Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification. Journal of Chromatography B. 1006:47–58.: Elsevier Abstract
n/a
Palma, SI, Marciello M, Carvalho A, Veintemillas-Verdaguer S, Morales Mdel P, Roque AC.  2015.  Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J Colloid Interface Sci. 437:147-55. AbstractWebsite

Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

Cardoso, BD, Vicente AI, Ward JBJ, Sebastiao PJ, Chavez FV, Barroso S, Carvalho A, Keely SJ, Martinho PN, Calhorda MJ.  2015.  Fe(III) salEen derived Schiff base complexes as potential contrast agents. Inorganica Chimica Acta. 432:258-266. AbstractWebsite

Three iron(III) complexes with ligands derived from N-ethyl-N-(2-aminoethyl) salicylaldiminate (H, 1; 5-Br, 2; 3-OMe, 3 substituents at the phenyl group) were prepared and the X-ray crystal structures of 1 and 2 are reported. NMR studies of solutions of these complexes in DMSO allowed for investigation of their magnetic behaviour and paramagnetic relaxation contribution. The relaxivities measured ranged from 0.35 to 0.80 mM(-1) s(-1) for proton Larmor frequencies from 0.01 to 300 MHz, in agreement with those known for other iron(III) based contrast agents. Biological studies on colonic epithelial T-84 cell monolayers showed that the compounds exert toxic effects only at concentrations higher than 100 mu M while coincidently reducing colonic epithelial secretory function. These two features make these complexes good candidates for further development in order to be used as MRI contrast agents. (C) 2015 Elsevier B.V. All rights reserved.

2011
Viegas, A, Manso J, Corvo M, Marques MM, Cabrita EJ.  2011.  Binding of ibuprofen, ketorolac, and diclofenac to COX-1 and COX-2 studied by saturation transfer difference NMR. J Med Chem. 54:8555-62., Number 24 AbstractWebsite

Saturation transfer difference NMR (STD-NMR) spectroscopy has emerged as a powerful screening tool and a straightforward way to study the binding epitopes of active compounds in early stage lead discovery in pharmaceutical research. Here we report the application of STD-NMR to characterize the binding of the anti-inflammatory drugs ibuprofen, diclofenac, and ketorolac to COX-1 and COX-2. Using well-studied COX inhibitors and by comparing STD signals with crystallographic structures, we show that there is a relation between the orientations of ibuprofen and diclofenac in the COX-2 active site and the relative STD responses detected in the NMR experiments. On the basis of this analysis, we propose that ketorolac should bind to the COX-2 active site in an orientation similar to that of diclofenac. We also show that the combination of STD-NMR with competition experiments constitutes a valuable tool to address the recently proposed behavior of COX-2 as functional heterodimers and complements enzyme activity studies in the effort to rationalize COX inhibition mechanisms.

Viegas, A, Manso J, Corvo MC, Marques MMB, Cabrita EJ.  2011.  Binding of ibuprofen, ketorolac, and diclofenac to COX-1 and COX-2 studied by saturation transfer difference NMR. Journal of medicinal chemistry. 54:8555–8562., Number 24: ACS Publications Abstract
n/a
2008
Cardoso, M, Figueirinhas JL, Cruz C, Van-Quynh A, Ribeiro AC, Feio G, Apreutesei D, Mehl GH.  2008.  Deuterium NMR Investigation of the Influence of Molecular Structure on the Biaxial Ordering of Organosiloxane Tetrapodes Nematic Phase. Molecular Crystals and Liquid Crystals. 495:700-+. AbstractWebsite

In order to contribute to the understanding of the origin of biaxial nematic ordering in tetrapodes, a deuterium NMR study was performed on mixtures of monomers from organosiloxane tetrapodes with a deuterated nematic probe. Contrary to the tetrapode system previously studied, which exhibits a biaxial nematic phase, the results for monomers are compatible, within the experimental error, with uniaxial nematic ordering in the whole nematic range. The data are in agreement with the conjecture that the nematic biaxial behaviour is related to hindering of the mesogenic units' rotational movements, arising from interdigitation and connection to the central silicon core.