Publications

Export 36 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
1
Beira, MJ, Daniel CI, Almeida PL, Corvo MC, Rosatella AA, Afonso CAM, Sebastiao PJ.  2017.  1H NMR Relaxometry and Diffusometry Study of Magnetic and Non-Magnetic Ionic Liquid-Based Solutions: Co-Solvent and Temperature Effects. The Journal of Physical Chemistry B. : ACS Publications AbstractWebsite

In this work, 1H NMR relaxometry and diffusometry as well as viscometry experiments were carried out as a means to study the molecular dynamics of magnetic and non-magnetic ionic liquid-based systems. In order to evaluate the effect of a co-solvent on the super-paramagnetic properties observed for Aliquat-iron-based magnetic ionic liquids, mixtures comprising different concentrations, 1% and 10% (v/v), of DMSO-d6 were prepared and analyzed. The results suggest that, when at low concentrations, DMSO-d6 promotes more structured ionic arrangements, thus enhancing these super-paramagnetic properties. Furthermore, the analysis of temperature and water concentration effects allowed to conclude that neither one of these variables sufficiently affected the super-paramagnetic properties of the studied magnetic ionic liquids.

C
Echeverria, C, Aguirre LE, Merino EG, Almeida PL, Godinho MH.  2015.  Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks. ACS Appl Mater Interfaces. 7:21005-9., Number 38 AbstractWebsite

The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

Echeverria, C, Almeida PL, Feio G, Figueirinhas JL, Godinho MH.  2015.  A cellulosic liquid crystal pool for cellulose nanocrystals: Structure and molecular dynamics at high shear rates. European Polymer Journal. 72:72-81. AbstractWebsite

Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.

Alexandre, J, Feio G, Marvao MR, Figueiredo J.  2004.  Correlation between high power proton T(2) NMR relaxation and macroscopic viscoelastic properties. Advanced Materials Forum Ii. 455-456(R. Martins, E. Fortunato, Ferreira, I., Dias, C., Eds.).:459-462. Abstract
n/a
Adeoye, O, Conceição J, Serra PA, da Silva AB, Duarte N, Guedes RC, Corvo MC, Aguiar-Ricardo A, Jicsinszky L, Casimiro T, Cabral-Marques H.  2020.  Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydrate Polymers. 227:115287.: Elsevier AbstractWebsite

Lopinavir (LPV) is currently used in combination with ritonavir for the clinical management of HIV infections due to its limited oral bioavailability. Herein, we report the application of an in silico method to study cyclodextrin (CyD) host-guest molecular interaction with LPV for the rational selection of the best CyD for developing a CyD based LPV delivery system. The predicted CyD, a (2-hydroxy)propyl-gamma derivative with high degree of substitution (HP17-γ-CyD) was synthesized and comparatively evaluated with γ-CyD and the commercially available HP-γ-CyD. All complexes were prepared by supercritical assisted spray drying (SASD) and co-evaporation (CoEva) at molar ratios (1:1 and 1:2); and afterwards fully characterized. Results indicate a higher LPV amorphization and solubilization ability of HP17-γ-CyD. The SASD processing technology also enhanced LPV solubilization and release from complexes. The application of in silico methodologies is a feasible approach for the rational and/or deductive development of CyD drug delivery systems.

D
dos Santos, LM, Bernard FL, Polesso BB, Pinto IS, Frankenberg CC, Corvo MC, Almeida PL, Cabrita E, Menezes S, Einloft S.  2020.  Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. Journal of Environmental Management. 268:110340. AbstractWebsite

CO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).

Ribeiro, SO, Nogueira LS, Gago S, Almeida PL, Corvo MC, de Castro B, Granadeiro CM, Balula SS.  2017.  Desulfurization Process conciliating Heterogeneous Oxidation and liquid extraction: Organic Solvent or Centrifugation/Water? Applied Catalysis A: General. : Elsevier AbstractWebsite

The present work presents a strategic oxidative desulfurization system able to efficiently operate under sustainable conditions, i.e. using an eco-friendly oxidant and without the need of extractive organic solvents. The catalytic performance of Eu(PW11O39)2@aptesSBA-15 was evaluated for the oxidative desulfurization of a multicomponent model diesel using a solvent-free or biphasic systems. The results reveal its remarkable desulfurization performance achieving complete desulfurization after just 2 h of reaction. Moreover, the composite has shown a high recycling ability without loss of catalytic activity for ten consecutive ODS cycles. Interestingly, under solvent-free conditions it was possible to maintain the desulfurization efficiency of the biphasic system while being able to avoid the use of harmful organic solvents. In this case, a successful extraction of oxidized sulfur compounds was found conciliating centrifugation and water as extraction solvent. Therefore, this work reports an important step towards the development of novel eco-sustainable desulfurization systems with high industrial interest.

Cardoso, M, Figueirinhas JL, Cruz C, Van-Quynh A, Ribeiro AC, Feio G, Apreutesei D, Mehl GH.  2008.  Deuterium NMR Investigation of the Influence of Molecular Structure on the Biaxial Ordering of Organosiloxane Tetrapodes Nematic Phase. Molecular Crystals and Liquid Crystals. 495:700-+. AbstractWebsite

In order to contribute to the understanding of the origin of biaxial nematic ordering in tetrapodes, a deuterium NMR study was performed on mixtures of monomers from organosiloxane tetrapodes with a deuterated nematic probe. Contrary to the tetrapode system previously studied, which exhibits a biaxial nematic phase, the results for monomers are compatible, within the experimental error, with uniaxial nematic ordering in the whole nematic range. The data are in agreement with the conjecture that the nematic biaxial behaviour is related to hindering of the mesogenic units' rotational movements, arising from interdigitation and connection to the central silicon core.

Kundu, S, Feio G, Pinto LFV, Almeida PL, Figueirinhas JL, Godinho MH.  2010.  Deuterium NMR Study of Orientational Order in Cellulosic Network Microfibers. Macromolecules. 43:5749-5755., Number 13 AbstractWebsite

Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  DEVELOPMENTS IN THE REACTIVITY OF 2-METHYL IMIDAZOLIUM SALTS. The Journal of Organic Chemistry. 82(12):6232–6241.: American Chemical Society AbstractWebsite

Unexpected and unusual reactivity of 2-methylimidazolium salts toward aryl-N-sulfonylimines and aryl aldehydes is here reported. Upon reaction with aryl-N-sulfonylimines, the addition product, arylethyl-2-imidazolium-1-tosylamide (3), is formed with moderate to good yields, while upon reaction with aldehydes, the initial addition product (6) observed in NMR and HPLC–MS experimental analysis is postulated by us as an intermediate to the final conversion to carboxylic acids. Studies in the presence and absence of molecular oxygen allow us to conclude that the imidazolium salts is crucial for the oxidation. A detailed mechanistic study was carried out to provide insights regarding this unexpected reactivity.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  Developments in the Reactivity of 2-Methylimidazolium Salts. The Journal of organic chemistry. 82:6232–6241., Number 12: American Chemical Society Abstract
n/a
E
Echeverria, C, Fernandes SN, Almeida PL, Godinho MH.  2016.  Effect of cellulose nanocrystals in a cellulosic liquid crystal behaviour under low shear (regime I): Structure and molecular dynamics. European Polymer Journal. 84:675-684. AbstractWebsite

In the field of cellulosic liquid crystals, attempts to establish the relationship between structure/properties have been developed. Above a critical concentration in an aqueous solution, hydroxypropylcellulose self-assembles in order to form cholesteric liquid crystal phases (LC-HPC). In this work we aim to understand how the incorporation of a low content of cellulose nanocrystals (CNC) within LC-HPC/H2O (50 wt%), could influence the behaviour of the system when subjected to low shear rates, where the cholesteric phase still persists. The analysis of the deuterium spectrum and the T2 (transversal relaxation) values confirm that the mobility of LC-HPC at low shear rates is restricted due to CNC, and consequently so is the flow of the cholesteric polydomains. These effects are more evident in the LC-HPC sample containing 2 wt% of CNC; besides needing more strain units to induce some degree of order, the achieved degree of order is recovered faster when compared to the reference sample.

Ribeiro, SO, Granadeiro CM, Almeida PL, Pires J, Valenca R, Campos-Martin JM, Ribeiro JC, de Castro B, Balula SS.  2019.  Effective Zinc-Substituted Keggin Composite To Catalyze the Removal of Sulfur from Real Diesels under a Solvent-Free System, {OCT 9}. Industrial & Engineering Chemistry Research. 58:18540-18549., Number {40} AbstractWebsite

{The Keggin phosphotungstate (PW12) and its zinc derivative (PW11Zn) were tested as oxidative catalysts for desulfurization processes using simulated and real diesels. These compounds were used as homogeneous catalysts, while the corresponding SBA-15 composites were used as heterogeneous catalysts. The comparison of their catalytic performance demonstrated that the zinc-substituted polyoxo-metalate is more efficient than the plenary PW12 structure. Additionally, using the heterogeneous PW11Zn@aptesSBA-15, the sustainability and catalytic efficiency was largely improved, allowing the total sulfur removal from model diesel after 1 h using a small amount of oxidant (H2O2/S = 4) under an oxidative solvent-free system. The desulfurization of real diesels was performed under similar conditions, achieving 87.8% of efficiency using the PW11Zn@aptesSBA-15 catalyst. Furthermore, the catalyst maintained its activity over consecutive desulfurization cycles. The cost-effective operational conditions achieved with PW11Zn@aptesSBA-15 turn this into a promising material to be used in an industrial scale to treat diesel.}

Duczinski, R, Polesso BB, Bernard FL, Ferrari HZ, Almeida PL, Corvo MC, Cabrita EJ, Menezes S, Einloft S.  2020.  Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. Journal of Environmental Chemical Engineering. AbstractWebsite

Imidazolium-based ionic liquids (ILs) with different cation alkyl chain ([i-C5mim] or [C4mim]) and inorganic anions ([Cl−], [Tf2N−], [PF6−] and [DCA−]) were synthesized and immobilized in commercial mesoporous silica. The synthesized supported ILs (SILs) were characterized using NMR, FTIR, TGA, BET, SEM and TEM. CO2 sorption capacity, reusability and CO2/N2 selectivity were assessed by the pressure-decay technique. The effects of IL concentration, cation and anion chemical structure in CO2 sorption capacity and CO2/N2 separation performance were evaluated. Tests evidenced that the presence of branching on the cation alkyl side chain increases CO2/N2 selectivity. The immobilization of the IL [i-C5TPIm][Cl] on mesoporous silica in different concentrations (50, 20, 10 and 5 %) revealed that lower IL concentration results in higher CO2 sorption capacity. Immobilization of ILs containing fluorinated anions at low concentrations in the mesoporous silica support may promote the improvement of the CO2/N2 selectivity without interfering on CO2 sorption capacity of the original support. CO2 sorption capacity value shown by sample SIL-5 % - [i-C5TPIm][Tf2N] (79.50 ± 0.70 mg CO2  g-1) was close to the value obtained for the pristine mesoporous silica (81.70 ± 2.20 mg CO2 g-1) and the selectivity (4.30 ± 0.70) was more than twice of the one obtained for the support alone (2.32 ± 0.4). Recycle tests demonstrated that the ILs immobilized in mesoporous silica samples are stable, providing a new option to be used in CO2 capture processes.

Neves, CS, Granadeiro CM, Cunha-Silva L, Ananias D, Gago S, Feio G, Carvalho PA, Eaton P, Balula SS, Pereira E.  2013.  Europium Polyoxometalates Encapsulated in Silica Nanoparticles Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry. :2877-2886., Number 16 AbstractWebsite

The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW11)x (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, 31P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW11)x@SiO2 nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides.

Khili, F, Borges J, Almeida PL, Boukherroub R, Omrani AD.  2019.  Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization. 10:1913–1927. AbstractWebsite

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

F
Fundo, JF, Amaro AL, Madureira AR, Carvalho A, Feio G, Silva CLM, Quintas MAC.  2015.  Fresh-cut melon quality during storage: An NMR study of water transverse relaxation time. Journal of Food Engineering. 167:71-76. AbstractWebsite

Molecular mobility is a fundamental parameter which reflects the dynamic properties of food components and contributes to food degradation reactions comprehension. Fresh-cut fruits have become an important food market segment. However, processing of fruits promotes faster its physiological deterioration, biochemical changes and microbial degradation. The purpose of this work was to use NMR methodology as a tool to evaluate fresh-cut fruit quality, during storage at refrigerated conditions. The fresh-cut melon transverse relaxation time (T-2) was measured for a period of 7 days of storage at 5 degrees C. The relationship between the obtained values, microstructure and quality parameters was investigated. In general, results show the existence of one class of water fluidity in the system, the one present in cells after processing. T-2, a measure of this fluidity, is affected by the processing and storage time. Also, it is possible to find a close relationships between T-2 and quality parameters of total colour difference (TCD), firmness and a(w). As T-2 increases TCD also increases, while firmness and aw decrease. These results highlight the usefulness of NMR methodology application in food science. (C) 2015 Elsevier Ltd. All rights reserved.

H
Oliveira, FS, Pereiro AB, Araujo JM, Bernardes CE, Canongia Lopes JN, Todorovic S, Feio G, Almeida PL, Rebelo LP, Marrucho IM.  2013.  High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Phys Chem Chem Phys. 15:18138-47., Number 41 AbstractWebsite

The subject of ionicity has been extensively discussed in the last decade, due to the importance of understanding the thermodynamic and thermophysical behaviour of ionic liquids. In our previous work, we established that ionic liquids' ionicity could be improved by the dissolution of simple inorganic salts in their milieu. In this work, a comparison between the thermophysical properties of two binary systems of ionic liquid + inorganic salt is presented. The effect of the ammonium thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethylsulfonate and ethylsulfate, is investigated in terms of the related thermophysical properties, such as density, viscosity and ionic conductivity in the temperature range 298.15-323.15 K. In addition, spectroscopic (NMR and Raman) and molecular dynamic studies were conducted in order to better understand the interactions that occur at a molecular level. The obtained results reveal that although the two anions of the ionic liquid exhibit similar chemical structures, the presence of one additional oxygen in the ethylsulfate anion has a major impact on the thermophysical properties of the studied systems.

I
Azevedo, G, Domingues B, Abreu H, Sousa-Pinto I, Feio G, Hilliou L.  2015.  Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties. Carbohydr Polym. 116:140-8. AbstractWebsite

The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides.

Mouquinho, A, Corvo MC, Almeida PL, Feio GM, Sotomayor J.  2020.  Influence of chain length of prepolymers in permanent memory effect of PDLC assessed by solid-state NMR. Liquid Crystals. 47:522–530., Number 4: Taylor & Francis AbstractWebsite

The relationship between linear chain (ethylene oxide units) length of polymerisable monomers with morphology, electro-optical properties and 13C nuclear magnetic resonance (NMR) spectroscopy of the corresponding polymer-dispersed liquid crystal (PDLC) films was investigated. The preferred liquid crystal molecule alignment and permanent memory effect of PDLC were greatly influenced by the length of the molecular chain of prepolymers to be incorporated as a polymer matrix. By increasing the number of ethylene oxide in prepolymer chain and maintaining the number of functionalities (polymerisable groups in each monomer molecule), the permanent memory effect of PDLC increased, as proved by solid-state 13C NMR spectroscopy.

L
Mirante, F, Alves AC, Juliao D, Almeida PL, Gago S, Valenca R, Ribeiro JC, de Castro B, Granadeiro CM, Balula SS.  2020.  Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels, {JAN 1}. Fuel. 259:116213. AbstractWebsite

A novel composite has been prepared through the immobilization of the Keggin sandwich-type {[}Sm (PMo11O39)(2)](11-) anion (SmPOM) on large-pore silica spheres previously functionalized with trimethylammonium groups (TMA). The resulting SmPOM@TMA-LPMS material has been evaluated as heterogeneous catalyst in a biphasic desulfurization 1:1 diesel/extraction solvent system using H2O2 as oxidant. Preliminary experiments were conducted with different extraction solvents, acetonitrile and {[}BMIM]PF6 ionic liquid. The optimized extractive and catalytic oxidative desulfurization system (ECODS) with {[}BMIM]PF6 was able to reach complete sulfur removal from a model diesel containing 2100 ppm S in just 60 min (10 min of initial extraction + 50 min of catalytic step). The reutilization of catalyst and extraction phase has been successfully performed without loss of desulfurization efficiency in consecutive cycles, turning the process more sustainable and cog-effective. The remarkable results with simulated diesel have motivated the application of the catalyst in the desulfurization of untreated real diesel and 74% of efficiency was achieved after only 2 h for three consecutive cycles.

M
Mirante, F, Gomes N, Branco LC, Cunha-Silva L, Almeida PL, Pillinger M, Gago S, Granadeiro CM, Balula SS.  2019.  Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization, {FEB}. Microporous and Mesoporous Materials. 275:163-171. AbstractWebsite

Mesoporous silica nanoparticles (MSNs) strategically functionalized were used to immobilize a homogeneous polyoxomolybdate catalyst {[}PMo12O40](3-) (PMo12), active but unstable. The PMo12@TBA-MSN composite (where TBA refers to surface-tethered tributylammonium groups) conferred high stability to the polyoxomolybdate catalytic center and displayed an increase in efficiency for the oxidative desulfurization (ECODS) of a diesel simulant under sustainable conditions (using H2O2 as oxidant and an ionic liquid, {[}BMIM]PF6, as solvent). Continuous reuse of the catalyst and ionic liquid solvent in consecutive ECODS cycles was successfully performed, avoiding the production of residual wastes. The performance of the PMo12@TBA-MSN catalyst improved upon its reuse, leading to complete desulfurization of a multicomponent model diesel containing benzothiophene derivatives after just 1 h of the catalytic stage of the process. The robust nature of the supported catalyst was indicated by characterization of the recovered solid which showed retention of the structural and chemical integrities.

Fundo, JF, Fernandes R, Almeida PM, Carvalho A, Feio G, Silva CL, Quintas MA.  2014.  Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chem. 144:2-8. AbstractWebsite

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain.

Beira, JM, Silva MP, Condesso M, Cosme P, Almeida PL, Corvo M, Sebastião PJ, Figueirinhas JL, de Pinho MN.  2018.  Molecular order and dynamics of water in hybrid cellulose acetate–silica asymmetric membranes. Molecular Physics. :1–8.: Taylor & Francis AbstractWebsite

In this work 2H NMR spectroscopy and 1H NMR relaxometry and diffusometry were used to characterise water order and dynamics in cellulose acetate/silica asymmetric membranes. Two hydrated membranes were characterised allowing the identification of extra ordering of the water molecules and the presence in each membrane of up to two spectral components with different degrees of order and different T1 values. The mechanism behind this order increase was ascribed to the rapid exchange of the water molecules between the pore walls and its interior. T1 relaxometry dispersions allowed for the identification of the relevant mechanisms of pore-confined water motion, with rotations mediated by translational displacements (RMTD) as the dominant mechanism in the low frequency region. Using the RMTD low cut off frequency along with the in situ directly measured diffusion constant it was possible do determine characteristic lengths of correlated water motion in both membranes studied, which fall in ranges compatible with typical pore dimensions in similar membranes.

N
Granadeiro, CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Van Deun R, de Castro B, Balula SS.  2016.  A novel red emitting material based on polyoxometalate@ periodic mesoporous organosilica. Microporous and Mesoporous Materials. 234:248-256. AbstractWebsite

The first lanthanopolyoxometalate-supported bifunctional periodic mesoporous organosilica (BPMO) composite is here reported. The incorporation of decatunsgstoeuropate anions ([Eu(W5O18)2]9−) within the porous channels of an ethylene-bridged TMAPS-functionalized BPMO produced a luminescent material exhibiting a strong red emission under UV irradiation. Photoluminescence studies showed an efficient energy transfer process to the lanthanide emitting center in the material (antenna effect). A significant change in the coordination environment of Eu3+ ions was observed after its incorporation into the TMAPS-functionalized material. The possible reason for this is discussed within the paper.

O
Paiva, T, Echeverria C, Godinho MH, Almeida PL, Corvo M.  2019.  On the influence of imidazolium ionic liquids on cellulose derived polymers. European Polymer Journal. : Elsevier AbstractWebsite

The demand for better cellulose solvents has driven the search for new and improved materials to enable the processing of this polysaccharide. Ionic liquids have been debated for a long time as interesting alternatives, but the molecular details on the solubilization mechanism have been a matter of controversy. Herein, for the first time, the structure and dynamics of hydroxypropylcellulose (HPC) liquid crystal solutions were probed in the presence of imidazolium ionic liquids (ILs), conjugating rheological measurements with magnetic resonance spectroscopy. This study provides a characterization of the solutions macroscopic behaviour, where the liquid crystalline (LC) properties were maintained. Using ILs with different side chain lengths, the influence of the hydrophobic IL domain in the solvation abilities of ILs towards a cellulose derived polymer was accessed, providing experimental evidence on these interactions.

Ribeiro, SO, Granadeiro CM, Almeida PL, Pires J, Capel-Sanchez MC, Campos-Martin JM, Gago S, de Castro B, Balula SS.  2019.  Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems, {AUG 1}. Catalysis Today. 333:226-236., Number {SI} AbstractWebsite

Strategic polyoxometalate Keggin-type structural modification was performed to increase the oxidative catalytic performance to desulfurize model and real diesels. The most active lacunar structure {[}PW11O39](7-) (PW11) showed to complete desulfurize a simulated diesel after 60 min at 70 degrees C. Its application as homogeneous catalyst using a biphasic system 1: 1 diesel/acetonitrile needed to use an excess of oxidant (ratio H2O2/S = 8). The immobilization of the PW11 on amine-functionalized SBA-15 supports originated two heterogeneous catalysts PW11@aptesSBA-15 and PW11@tbaSBA-15. The best results were attained with the PW11@aptesSBA-15 catalyst showing identical oxidative desulfurization performance as the homogeneous analogue. As advantage, this heterogeneous catalyst promotes the complete desulfurization of simulated diesel using a solvent-free system, i.e. without the need of acetonitrile use. On the other hand, the same desulfurization efficiency could be achieved using half the amount of oxidant (H2O2/S = 4). The oxidative desulfurization of the real diesel achieved a remarkable 83.4% of efficiency after just 2 h. The recycling capacity of PW11@aptesSBA-15 catalyst was confirmed for eight consecutive cycles using the biphasic and the solvent-free systems. Its stability investigation demonstrates to be higher under the solvent-free system than the biphasic system, without practically any occurrence of PW11 leaching in the first case. On the other hand, the Venturello peroxocomplex {[}PO4\{W(O-2)(2)\}(4)](3-), recognized as active intermediate in the homogeneous biphasic system, was not identified in the heterogeneous catalytic systems.

P
Ribeiro, SO, Almeida PL, Pires J, de Castro B, Balula SS.  2020.  Polyoxometalate@Periodic mesoporous organosilicas as active materials for oxidative desulfurization of diesels, {AUG 1}. Microporous and Mesoporous Materials. 302:110193. AbstractWebsite

Novel material catalysts based in the active zinc-substituted polyoxotungstate ({[}PW11Zn(H2O)(39)](5-), abbreviated as PW11Zn) were efficiently used in the oxidative desulfurization of real and model diesels. These active catalytic center was strategically immobilized in a less hydrophilic periodic mesoporous organosilicas (PMOs), containing ethane-bridge (PMOE) and benzene-bridge (PMOB) walls, functionalized with (3-aminopropyl)triethoxysilane (aptes). The efficiency of the novel catalytic composites (PW11Zn@aptesPMOE and PM11Zn@aptesPMOB) was studied under oxidative desulfurization system (CODS) without the presence of an extraction solvent and also using a biphasic (diesel/extraction solvent) oxidative desulfurization system (ECODS). Both composites presented higher desulfurization efficiency under the solvent-free system, reaching ultra-low levels of sulfur compounds after only 1 h and using low ratio of H2O2/S = 4. The catalysts could be recycled without loss of activity for ten consecutive cycles. However, after the first desulfurization cycle complete desulfurization was achieved within only 30 min using PW11Zn@aptesPMOE composite. Also, the structure of PW it Zn@aptesPMOE demonstrated to be more stable than PW11Zn@aptesPMOB, probably due to the occurrence of some PW11Zn leaching from the PMOB surface, probably caused by the lower interaction of PW11Zn with the benzene-bridge PMOB wall. The most robust catalyst PW11Zn@aptesPMOE was used to desulfurize a real diesel achieving 75.9% of desulfurization after 2 h. The catalyst was further recycled with success to treat real diesel.

R
Almeida, APC, Querciagrossa L, Silva PES, Goncalves F, Canejo JP, Almeida PL, Godinho MH, Zannoni C.  2019.  Reversible water driven chirality inversion in cellulose-based helices isolated from Erodium awns, {APR 7}. Soft Matter. 15:2838-2847., Number {13} AbstractWebsite

Among the movements observed in some cellulosic structures produced by plants are those that involve the dispersion and burial of seeds, as for example in Erodium from the Geraniaceae plant family. Here we report on a simple and efficient strategy to isolate and tune cellulose-based hygroscopic responsive materials from Erodium awns' dead tissues. The stimuli-responsive material isolated forms left-handed (L) or right-handed (R) helical birefringent transparent ribbons in the wet state that reversibly change to R helices when the material dries. The humidity-driven motion of dead tissues is most likely due to a composite material made of cellulose networks of fibrils imprinted by the plant at the nanoscale, which reinforces a soft wall polysaccharide matrix. The inversion of the handedness is explained using computational simulations considering filaments that contract and expand asymmetrically. The awns of Erodium are known to present hygroscopic movements, forming R helices in the dry state, but the possibility of actuating chirality via humidity suggests that these cellulose-based skeletons, which do not require complicated lithography and intricate deposition techniques, provide a diverse range of applications from intelligent textiles to micro-machines.

Echeverria, C, Almeida PL, Feio G, Figueirinhas JL, Rey AD, Godinho MH.  2015.  Rheo-NMR study of water-based cellulose liquid crystal system at high shear rates. Polymer. 65:18-25. AbstractWebsite

Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.

T
Cordeiro, R, Beira MJ, Cruz C, Figueirinhas JL, Corvo MC, Almeida PL, Rosatella AA, Afonso CAM, Daniel CI, Sebastiao PJ.  2021.  Tuning the H-1 NMR Paramagnetic Relaxation Enhancement and Local Order of {[}Aliquat](+)-Based Systems Mixed with DMSO, {JAN}. International Journal of Molecular Sciences. 22:706., Number {2} AbstractWebsite

{Understanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] and on mixtures of these with different concentrations of DMSO by means of H-1 NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] mixture. The addition of DMSO provides a way of tuning both the local order of these systems and the relaxation enhancement produced by the tetrachloroferrate anion. Very small DMSO volume concentrations (at least up to 1%) lead to enhanced paramagnetic relaxation without compromising the locally ordered domains. Larger DMSO concentrations gradually destroy these domains and reduce the effect of paramagnetic relaxation, while solvating the ions present in the mixtures. The paramagnetic relaxation was explained as a correlated combination of inner and outer-sphere mechanisms, in line with the size and structure differences between cation and anion. This study presents a robust method of characterizing paramagnetic ionic systems and obtaining a consistent analysis for a large set of samples having different co-solvent concentrations.}

Echeverria, C, Almeida PL, Gutierrez OAF, Rey AD, Godinho MH.  2017.  Two negative minima of the first normal stress difference in a cellulose-based cholesteric liquid crystal: Helix uncoiling. Journal of Polymer Science Part B: Polymer Physics. 55(10):821-830. AbstractWebsite

The shear rate dependence of material functions such as shear viscosity (η) and the first normal stress difference (N1) were given and interpreted earlier by Kiss and Porter. Their widely accepted work revealed the possibility of having a negative minimum of N1 for polymeric liquid crystals. In this work, we disclose for the first time the evidence of two negative N1 minima on a sheared cellulosic lyotropic system. The lower shear rate minimum is ascribed to the uncoiling of the cholesteric helix, as theoretically predicted earlier. Our findings contribute also to the understanding of the other minimum already reported in the literature and attributed to the nematic director tumbling mode. Moreover, the elastic change that the LC-HPC sample undergoes during the helix unwinding of the cholesteric structure is also by means of oscillatory measurements. This study is a contribution for the understanding of the structure-properties relationship linked with the complex rheological behavior of chiral nematic cellulose-based systems and may help to improve their further processing.

U
Echeverria, C, Almeida PL, Figueirinhas JL, Godinho MH.  2019.  Understanding the influence of carbon nanotubes on the flow behavior of liquid crystalline hydroxypropylcellulose: A Rheo-NMR study, {OCT 10}. POLYMER. 180:121675. AbstractWebsite

Hydroxypropylcellulose (HPC) is an important cellulose derivative that has been widely studied due to its water-solubility, biocompatibility and biodegradability, but even more significant due to its ability to form liquid crystalline phases. HPC is able to form, under certain conditions, chiral nematic (cholesteric) structures in water solutions. Previous work confirmed that films prepared from liquid crystalline HPC/water solutions (LC-HPC) gave rise to anisotropic networks, with similar mechanical and optical characteristics of Liquid Crystalline Elastomers (LCE), capable to respond to humidity. It was also demonstrated that the incorporation of carbon nanotubes (CNTs) significantly improved the actuator responsiveness. In the work presented herein, we investigate how the incorporation of carbon nanotubes affects the flow behavior of LC-HPC solutions, and thus the structure-properties relationship, through a detailed Rheo-NMR study. As observed from the results, when shearing the samples, the degree of order reached (maximum quadrupolar peak splitting) by LC-HPC solutions increases with CNT content. Regarding the subsequent relaxation process, only the incorporation of 0.01 wt% of CNTs (lowest content) contributes to a faster recovery of cholesteric structure.

W
Geng, Y, Almeida PL, Feio GM, Figueirinhas JL, Godinho MH.  2013.  Water-Based Cellulose Liquid Crystal System Investigated by Rheo-NMR. Macromolecules. 46:4296-4302., Number 11 AbstractWebsite

Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.

dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2017.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1-16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.

dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2018.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1–16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.