Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Santos, TG, Fernandes FB, Bernardo G, Miranda RM.  2013.  Analyzing mechanical properties and nondestructive characteristics of brazed joints of NiTi shape memory alloys to carbon steel rods, 2013. International Journal of Advanced Manufacturing Technology. 66(5-8):787-793. AbstractWebsite
n/a
C
Costa, FB, Machado MA, Bonfait GJ, Vieira P, Santos TG.  2021.  Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement. 172(108904) AbstractWebsite

Continuous wave terahertz (CW THz) imaging, is a variant of terahertz imaging that has been gaining scientific
and technological relevance in multiple areas. In this paper the fundamental phenomena of CW THz were
studied and a mathematical model was developed that successfully describes the Fabry–Perot interference for
such a system, opening the possibility for measurement of thicknesses and surface curvatures. The capabilities
of the system were tested using different types of defects, such as voids, water infiltrations and thin metallic
wires. The interactions between different materials, features and the radiation beam were numerically studied
using finite element method and the results agreed with the experiments. By comparing the results with other
Non-Destructive Testing methods, it was found that CW THz imaging is particularly interesting to image water
infiltrations and composite materials that incorporate conductive wires.

I
Braz Fernandes, FM, Camacho E, Rodrigues PF, Inácio P, Santos TG, Schell N.  2019.  In Situ Structural Characterization of Functionally Graded Ni–Ti Shape Memory Alloy During Tensile Loading, dec. Shape Memory and Superelasticity. 5:457–467., Number 4 AbstractWebsite

n/a

N
Lopez, A, Bacelar R, Pires I, G.Santos T, PedroSousa J, Quintino L.  2018.  Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing. 21:298-306. AbstractWebsite

The present work addressed the challenges of identifying applicable Non-Destructive Testing (NDT) techniques suitable for inspection and materials characterization techniques for Wire and Arc Additive Manufacturing (WAAM) parts. With the view of transferring WAAM to the industry and qualifying the manufacturing process for applications such as structural components, the quality of the produced parts needs to be assured. Thus, the main objective of this paper is to review the main NDT techniques and assess the capability of detecting WAAM defects, for inspection either in a monitoring, in-process or post-process scenario. Radiography and ultrasonic testing were experimentally tested on reference specimens in order to compare the techniques capabilities. Metallographic, hardness and electrical conductivity analysis were also applied to the same specimens for material characterization. Experimental outcomes prove that typical WAAM defects can be detected by the referred techniques. The electrical conductivity measurement may complement or substitute some destructive methods used in AM processing.