Machado, MA, Antin K-N, Rosado LS, Vilaça P, Santos TG.
2019.
Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer. Composites Part B: Engineering. 168:226-235.
AbstractThis paper presents the development and the results of a customized eddy current (EC) non-destructive testing (NDT) system for highly demanding online inspection conditions. Several planar eddy current array probes were designed, numerically simulated and experimentally compared for the inspection of low conductivity unidirectional carbon fibre reinforced polymer (CFRP) ropes. The inspections were performed using a dedicated scanner device at 4 m/s with 3 mm probe lift-off where defects under 1 mm were detected with an excellent SNR. Different defect morphologies and sizes, such as broken fibres and lateral cuts, were successful detected and compared to conventional probes.
Antin, K-N, Machado MA, Santos TG, Vilaça P.
2019.
Evaluation of Different Non-destructive Testing Methods to Detect Imperfections in Unidirectional Carbon Fiber Composite Ropes. Journal of Nondestructive Evaluation. 38(23)
AbstractOnline monitoring of carbon fiber reinforced plastic (CFRP) ropes requires non-destructive testing (NDT) methods capable of detecting multiple damage types at high inspection speeds. Three NDT methods are evaluated on artificial and realistic imperfections in order to assess their suitability for online monitoring of CFRP ropes. To support testing, the microstructure and electrical conductivity of a carbon fiber rope is characterized. The compared methods are thermography via thermoelastic stress analysis, ultrasonic testing with commercial phased array transducers, and eddy current testing, supported by tailor-made probes. While thermoelastic stress analysis and ultrasonics proved to be accurate methods for detecting damage size and the shape of defects, they were found to be unsuitable for high-speed inspection of a CFRP rope. Instead, contactless inspection using eddy currents is a promising solution for real-time online monitoring of CFRP ropes at high inspection speeds.
Machado, MA, Antin KN, Rosado LS, Vilaça P, Santos TG.
2019.
High speed inspection of UD CFRP composites. 58th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2019. , Telford, UK
AbstractOnline monitoring of carbon fibre reinforced polymer (CFRP) components requires a Non-Destructive Testing (NDT) method capable of contactless sensing of damage, while enabling high inspection speeds needed for monitoring large components. Eddy current testing (ECT) of CFRP components has great potential for two reasons. First, ECT probes are capable of operating without contact, although minimizing the lift-off is preferred. Second, impedance analysers with high sample rates make high-speed inspection possible. This research assesses the damage detection capabilities of eddy current probes on CFRP samples with artificial and realistic damage. To support the aptitude of the ECT method for these needs, the CFRP material is characterized and numerical simulations are performed in order to develop optimized and tailored ECT probes for the detection of defects with different morphologies, namely fibre breakage and delaminations, and to take into consideration the highly anisotropic electrical bulk resistivity of the CFRP material. Different ECT probes were designed, produced and experimentally validated. The experiments were performed at a high inspection speed (4 m/s) and the high sensitivity of the probes was demonstrated.
Machado, MA, Inácio PL, Santos RA, Gomes AF, Martins AP, Carvalho MS, Santos TG.
2019.
Inspection of composite parts produced by additive manufacturing: Air-coupled ultrasound and thermography. 58th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2019. , Telford, UK
AbstractPolymeric parts produced by Fused Deposition Modelling (FDM) Additive Manufacturing (AM) has no special safety requirements, and therefore, NDT is not required. However, the use of AM to produce Fibre Reinforcement Thermoplastics (FRTP) parts means that structural applications with safety requirements are envisaged, demanding reliable NDT methods. This paper presents experimental results and numerical simulation by Finite Element Method (FEM) of the NDT inspection of different parts of polymeric and RFTP composite materials. The parts were produced by FDM Additive Manufacturing and different delamination defects were introduced at different positions and with different dimensions and morphologies. Two different NDT techniques were used, exploiting different inspection parameters: air-coupled ultrasound, using frequencies between 50 and 400 kHz and active transient thermography, in both reflection and transition modes. The influence of the curvature of the parts was analysed, from the experimental point of view, and the results were compared with different numerical simulation strategies. It was shown that, both NDT techniques can detect the defects, with good spatial resolution, being the thermography reflection mode the fastest and expedite for curvature parts. The numerical simulation corroborates the experimental results allowing a deeper insight on the physical phenomena involved.
Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.
2019.
Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. Journal of Materials Science and Technology. 35:360-368.
AbstractThe use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.