Publications

Export 112 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Fernandes, TM, Morgado L, Salgueiro CA, Turner DL.  2019.  Determination of the magnetic properties and orientation of the heme axial ligands of PpcA from G. metallireducens by paramagnetic NMR. Journal of Inorganic Biochemistry. 198:110718. AbstractWebsite

The rising interest in the use of Geobacter bacteria for biotechnological applications demands a deep understanding of how these bacteria are able to thrive in a variety of environments and perform extracellular electron transfer. The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular acceptors, including heavy metals, toxic organic compounds or electrode surfaces. The periplasmic c-type cytochrome PpcA from this bacterium is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer between the cytoplasm and the extracellular environment. To better understand the functional mechanism of PpcA it is essential to obtain structural data for this cytochrome. In this work, the geometry of the heme axial ligands, as well as the magnetic properties of the hemes were determined for the oxidized form of the cytochrome, using the 13C NMR chemical shifts of the heme α-substituents. The results were further compared with those previously obtained for the homologous cytochrome from Geobacter sulfurreducens. The orientations of the axial histidine planes and the magnetic properties of the hemes are conserved in both proteins. Overall, the results obtained allowed the definition of the orientation of the magnetic axes of PpcA from G. metallireducens, which will be used as constraints to assist the solution structure determination of the cytochrome in the oxidized form.

Salgueiro, CA, Dantas JM, Morgado L.  2019.  Principles of Nuclear Magnetic Resonance and Selected Biological Applications. Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods. (Pereira, Alice S., Tavares, Pedro, Limão-Vieira, Paulo, Eds.).:245–286., Cham: Springer International Publishing Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is extremely powerful to study distinct biological systems ranging from biomolecules to specific metabolites. This chapter presents the basic concepts of the technique and illustrates its potential to study such systems. Similarly, to other spectroscopic techniques, the theoretical background of NMR is sustained by detailed mathematics and physical chemistry concepts, which were kept to the minimum. The intent is to introduce the fundamentals of the technique to science students from different backgrounds. The basic concepts of NMR spectroscopy are briefly presented in the first section, and the following sections describe applications in the biosciences field, using electron transfer proteins as model, particularly cytochromes. The heme groups endow cytochromes with particular features making them excellent examples to illustrate the high versatility of NMR spectroscopy. The main methodologies underlying protein solution structure determination are discussed in the second section. This is followed by a description of the main experiments explored to structurally map protein-protein or protein-ligand interface regions in molecular complexes. Finally, it is shown how NMR spectroscopy can assist in the functional characterization of multiheme cytochromes.

Dantas, JM, Portela PC, Fernandes AP, Londer YY, Yang X, Duke NEC, Schiffer M, Pokkuluri RP, Salgueiro CA.  2019.  Structural and Functional Relevance of the Conserved Residue V13 in the Triheme Cytochrome PpcA from Geobacter sulfurreducens. The Journal of Physical Chemistry B. 123:3050-3060., Number 14 AbstractWebsite

The triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant under several growth conditions and is important for extracellular electron transfer. PpcA plays a central role in transferring electrons resulting from the cytoplasmic oxidation of carbon compounds to the cell exterior. This cytochrome is designed to couple electron and proton transfer at physiological pH, a process achieved via the selection of dominant microstates during the redox cycle of the protein, which are ultimately regulated by a well-established order of oxidation of the heme groups. The three hemes are covered only by a polypeptide chain of 71 residues and are located in the small hydrophobic core of the protein. In this work, we used NMR and X-ray crystallography to investigate the structural and functional role of a conserved valine residue (V13) located within van der Waals contact of hemes III and IV. The residue was replaced by alanine (V13A), isoleucine (V13I), serine (V13S), and threonine (V13T) to probe the effects of the side chain volume and polarity. All mutants were found to be as equally thermally stable as the native protein. The V13A and V13T mutants produced crystals and their structures were determined. The side chain of the threonine residue introduced in V13T showed two conformations, but otherwise the two structures did not show significant changes from the native structure. Analysis of the redox behavior of the four mutants showed that for the hydrophobic replacements (V13A and V13I) the redox properties, and hence the order of oxidation of the hemes, were unaffected in spite of the larger side chain, isoleucine, showing two conformations with minor changes of the protein in the heme core. On the other hand, the polar replacements (V13S and V13T) showed the presence of two more distinctive conformations, and the oxidation order of the hemes was altered. Overall, it is striking that a single residue with proper size and polarity, V13, was naturally selected to ensure a unique conformation of the protein and the order of oxidation of the hemes, endowing the cytochrome PpcA with the optimal functional properties necessary to ensure effectiveness in the extracellular electron transfer respiratory pathways of G. sulfurreducens.

2018
Teixeira, LR, Dantas JM, Salgueiro CA, Cordas CM.  2018.  Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859(10):1132-1137. AbstractWebsite

Gene knock-out studies on Geobacter sulfurreducens have shown that the monoheme c-type cytochrome OmcF is essential for the extracellular electron transfer pathways involved in the reduction of iron and uranium oxy-hydroxides, as well as, on electricity production in microbial fuel cells. A detailed electrochemical characterization of OmcF was performed for the first time, allowing attaining kinetics and thermodynamic data. The heterogeneous electron transfer rate constant was determined at pH 7 (0.16 ± 0.01 cm s−1) indicating that the protein displays high electron transfer efficiency compared to other monoheme cytochromes. The pH dependence of the redox potential indicates that the protein has an important redox-Bohr effect in the physiological pH range for G. sulfurreducens growth. The analysis of the structures of OmcF allowed us to assign the redox-Bohr centre to the side chain of His47 residue and its pKa values in the reduced and oxidized states were determined (pKox = 6.73; pKred = 7.55). The enthalpy, entropy and Gibbs free energy associated with the redox transaction were calculated, pointing the reduced form of the cytochrome as the most favourable. The data obtained indicate that G. sulfurreducens cells evolved to warrant a down-hill electron transfer from the periplasm to the outer-membrane associated cytochrome OmcF.

Ferreira, MR, Dantas JM, Salgueiro CA.  2018.  The triheme cytochrome PpcF from Geobacter metallireducens exhibits distinct redox properties. FEBS Open Bio. , Number ja AbstractWebsite

Abstract Electrogenic bacteria, such as Geobacter, can couple the oxidation of carbon sources to the reduction of extracellular electron acceptors; such acceptors include toxic and radioactive metals, as well as electrode surfaces, making Geobacter a suitable candidate for applied use in bioremediation and bioenergy generation. Geobacter metallireducens is more promising in this regard than the better studied Geobacter sulfurreducens, as it has more efficient Fe (III) reduction rates and can respire nitrate to ammonia. The operon responsible for nitrate reductase activity in G. metallireducens includes the gene encoding the cytochrome PpcF, which was proposed to exchange electrons with nitrate reductase. In the present work, we perform a biochemical and biophysical characterization of PpcF. Spectroscopic techniques, including circular dichroism (CD), UV-visible, and nuclear magnetic resonance (NMR) revealed that the cytochrome is very stable (Tm > 85 °C), contains three low-spin hemes, and is diamagnetic (S=0) and paramagnetic (S=1/2) in the reduced and oxidized states, respectively. The NMR chemical shifts of the heme substituents were assigned and used to determine the heme core architecture of PpcF. Compared to the PpcA-family from G. sulfurreducens, the spatial disposition of the hemes is conserved, but the functional properties are clearly distinct. In fact, potentiometric titrations monitored by UV-visible absorption reveal that the reduction potential values of PpcF are significantly less negative (-56 and -64 mV, versus the normal hydrogen electrode at pH 7.0 and 8.0, respectively). NMR redox titrations showed that the order of oxidation of the hemes is IV-I-III a feature not observed for G. sulfurreducens. The different redox properties displayed by PpcF, including the small redox-Bohr effect and low reduction potential value of heme IV, were structurally rationalized and attributed to the lower number of positively charged residues located in the vicinity of heme IV. Overall, the redox features of PpcF suggest that biotechnological applications of G. metallireducens may require less negative working functional redox windows than those using by G. sulfurreducens.

Portela, PC, Fernandes TM, Dantas JM, Ferreira MR, Salgueiro CA.  2018.  Biochemical and functional insights on the triheme cytochrome PpcA from Geobacter metallireducens. Archives of Biochemistry and Biophysics. 644:8-16. AbstractWebsite

G. metallireducens bacterium has highly versatile respiratory pathways that provide the microorganism an enormous potential for many biotechnological applications. However, little is known about the structural and functional properties of its electron transfer components. In this work, the periplasmic cytochrome PpcA from G. metallireducens was studied in detail for the first time using complementary biophysical techniques, including UV–visible, CD and NMR spectroscopy. The results obtained showed that PpcA contains three low-spin c-type heme groups with His-His axial coordination, a feature also observed for its homologue in G. sulfurreducens. However, despite the high sequence homology between the two cytochromes, important structural and functional differences were observed. The comparative analysis of the backbone, side chain and heme substituents NMR signals revealed differences in the relative orientation of the hemes I and III. In addition, redox titrations followed by visible spectroscopy showed that the redox potential values for PpcA from G. metallireducens (−78 and −93 mV at pH 7 and 8, respectively) are considerably less negative. Overall, this study provides biochemical and biophysical data of a key cytochrome from G. metallireducens, paving the way to understand the extracellular electron transfer mechanisms in these bacteria.

Ferreira, MR, Salgueiro CA.  2018.  Biomolecular Interaction Studies Between Cytochrome PpcA From Geobacter sulfurreducens and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA). Frontiers in Microbiology. 9:2741. AbstractWebsite

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium that exhibits an enormous respiratory versatility, including the utilization of several toxic and radioactive metals as electron acceptors. This versatility is also replicated in the capability of the most abundant cytochrome in G. sulfurreducens, the periplasmic triheme cytochrome PpcA, to reduce uranium, chromium and other metal ions. From all possible electron transfer pathways in G. sulfurreducens, those involved in the iron reduction are the best characterized to date. In a previous work we provided structural evidence for the complex interface established between PpcA and the electron acceptor Fe(III)-citrate. However, genetic studies suggested that this acceptor is mainly reduced by outer membrane cytochomes. In the present work, we used UV-visible measurements to demonstrate that PpcA is able to directly reduce the electron acceptor ferric nitrilotriacetic acid (Fe-NTA), a more outer membrane permeable iron chelated form. In addition, the molecular interactions between PpcA and Fe-NTA were probed by Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra obtained for natural abundance and 15N-enriched PpcA samples in the absence and presence of Fe-NTA showed that the interaction is reversible and encompasses a positively charged surface region located in the vicinity of the heme IV. Overall, the study provides for the first time a clear illustration of the formation of an electron transfer complex between PpcA and a readily outer-membrane permeable iron chelated form. The structural and functional relationships obtained explain how a single cytochrome is designed to effectively interact with a wide range of G. sulfurreducens electron acceptors, a feature that can be explored for optimal bioelectrochemical applications.

Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.  2018.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8 AbstractWebsite

The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.

Fernandes, TM, Morgado L, Salgueiro CA.  2018.  Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from Geobacter metallireducens. Biochemical Journal. : Portland Press Limited AbstractWebsite

The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular electron acceptors, including pollutants or electrode surfaces for current production in microbial fuel cells. For these reasons, G. metallireducens are of interest for practical biotechnological applications. The use of such electron acceptors relies on a mechanism that permits electrons to be transferred to the cell exterior. The cytochrome PpcA from G. metallireducens is a member of a family composed by five periplasmic triheme cytochromes, which are important to bridge the electron transfer from the cytoplasmic donors to the extracellular acceptors. Using NMR and visible spectroscopic techniques, a detailed thermodynamic characterization of PpcA was obtained, including the determination of the heme reduction potentials and their redox and redox-Bohr interactions. These parameters revealed unique features for PpcA from G. metallireducens compared to other triheme cytochromes from different microorganisms, namely the less negative heme reduction potentials and concomitant functional working potential ranges. It was also shown that the order of oxidation of the hemes is pH independent, but the protein is designed to couple e-/H+ transfer exclusively at physiological pH.

2017
Silveira, CM, Castro MA, Dantas JM, Salgueiro C, Murgida DH, Todorovic S.  2017.  Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase, 2017. Physical Chemistry Chemical Physics. 19(13):8908-8918.: The Royal Society of Chemistry AbstractWebsite

Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that differ from those observed in other c-type cytochromes. We report surface enhanced resonance Raman spectroscopic and electrochemical characterization of the immobilized PccH, together with molecular dynamics simulations that allow for the rationalization of experimental observations. Upon attachment to electrodes functionalized with partially or fully hydrophobic self-assembled monolayers, PccH displays a distribution of native and non-native heme spin configurations, similar to those observed in horse heart cytochrome c. The native structural and thermodynamic features of PccH are preserved upon attachment mixed hydrophobic (-CH3/-NH2) surfaces, while pure -OH, -NH2 and -COOH surfaces do not provide suitable platforms for its adsorption, indicating that its still unknown physiological redox partner might be membrane integrated. Neither of the employed immobilization strategies results in electrocatalytically active PccH capable of the reduction of hydrogen peroxide. Pseudoperoxidase activity is observed in immobilized microperoxidase, which is enzymatically produced from PccH and spectroscopically characterized. Further improvement of PccH microperoxidase stability is required for its application in electrochemical biosensing of hydrogen peroxide.

Marques, AC, Santos L, Dantas JM, Gonçalves A, Casaleiro S, Martins R, Salgueiro CA, Fortunato E.  2017.  Advances in electrochemically active bacteria: Physiology and ecology. Handbook of Online and Near-real-time Methods in Microbiology. : CRC Press Abstract

The discovery of microorganisms with the ability of Extracellular Electron Transfer (EET), nearly three decades ago, sparked interest due to their ability to be used in diverse applications that can range from bioremediation to electricity production in Microbial Fuel Cells (MFC). Microbial respiration is based on electron transfer from a donor to an electron acceptor, through a series of stepwise electron transfer events that generate the necessary metabolic energy. Some microorganisms, such as Pseudomonas species, Shewanella putrefaciens or Geothrix fermentans are able to produce electrochemical mediators to increase the EET. The mechanical stability of the biofilm is provided by the biofilm matrix, a hydrated extracellular polymeric matrix that encases the biofilm cells. The biofilm matrix could potentially offer a resistance pathway to EET unless bacteria develop strategies to increase its conductivity. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications.

Dantas, JM, Brausemann A, Einsle O, Salgueiro CA.  2017.  NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens. FEBS Letters. 591:1657–1666. AbstractWebsite

Geobacter sulfurreducens is a dissimilatory metal reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high potential heme. The dissociation constant values indicate the formation of a low affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes.This article is protected by copyright. All rights reserved.

Dantas, JM, Silva MA, Pantoja-Uceda D, Turner DL, Bruix M, Salgueiro CA.  2017.  Solution structure and dynamics of the outer membrane cytochrome OmcF from Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1858(9):733-741. AbstractWebsite

ABSTRACTGene knock-out studies on Geobacter sulfurreducens cells showed that the outer membrane-associated monoheme cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI). In addition, microarray analysis of an OmcF-deficient mutant revealed that many of the genes with decreased transcript level were those whose expression is up-regulated in cells grown with a graphite electrode as electron acceptor, suggesting that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electricity production by G. sulfurreducens in microbial fuel cells. 15N,13C–labeled OmcF was produced and NMR spectroscopy was used to determine the solution structure of the protein in the fully reduced state and the pH-dependent conformational changes. In addition, 15N relaxation NMR experiments were used to characterize the overall and internal backbone dynamics of OmcF. The structure obtained is well defined, with an average pairwise root mean square deviation of 0.37 Å for the backbone atoms and 0.98 Å for all heavy atoms. For the first time a solution structure and the protein motions were determined for an outer membrane cytochrome from G. sulfurreducens, which constitutes an important step to understand the extracellular electron transfer mechanism in Geobacter cells.

Fernandes, AP, Nunes TC, Paquete CM, Salgueiro CA.  2017.  Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens. Biochemical Journal. 474:797–808., Number 5: Portland Press Limited AbstractWebsite

Accepted Manuscript online January 16, 2017.Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens. The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens.1D, one-dimensional; CbcL, c- and b-type cytochrome for low potential; EET, extracellular electron transfer; HP, His-patch; ImcH, inner membrane c-type cytochrome; MacA, metal-reduction-associated cytochrome; NaPi, sodium phosphate; NBAF, acetate-fumarate medium; NMR, nuclear magnetic resonance; PpcA, periplasmic c-type cytochrome; SDS–PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis; STC, small tetrahaem cytochrome.

Ferreira, MR, Dantas JM, Salgueiro CA.  2017.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the electron acceptor Fe(iii) citrate studied by NMR. Dalton Trans.. 46:2350-2359.: The Royal Society of Chemistry AbstractWebsite

Proteomic and genetic studies have identified a family of five triheme cytochromes (PpcA-E) that are essential in the iron respiratory pathways of Geobacter sulfurreducens. These include the reduction of Fe(iii) soluble chelated forms or Fe(iii) oxides{,} which can be used as terminal acceptors by G. sulfurreducens. The relevance of these cytochromes in the respiratory pathways of soluble or insoluble forms of iron is quite distinct. In fact{,} while PpcD had a higher abundance in the Fe(iii) oxides supplanted G. sulfurreducens cultures{,} PpcA{,} PpcB and PpcE were important in Fe(iii) citrate supplanted cultures. Based on these observations we probed the molecular interactions between these cytochromes and Fe(iii) citrate by NMR spectroscopy. NMR spectra were recorded for natural abundance and 15N-enriched PpcA{,} PpcB or PpcE samples at increasing amounts of Fe(iii) citrate. The addition of this molecule caused pronounced perturbations on the line width of the protein{'}s NMR signals{,} which were used to map the interaction region between each cytochrome and the Fe(iii) citrate molecule. The perturbations on the NMR signals corresponding to the backbone NH and heme methyl substituents showed that complex interfaces consist of a well-defined patch{,} which surrounds the more solvent-exposed heme IV methyl groups in each cytochrome. Overall{,} this study provides for the first time a clear illustration of the formation of an electron transfer complex between Fe(iii) citrate and G. sulfurreducens triheme cytochromes{,} shown to be crucial in this respiratory pathway.

Morgado, L, Bruix M, Pokkuluri RP, Salgueiro CA, Turner DL.  2017.  Redox- and pH-linked conformational changes in triheme cytochrome PpcA from Geobacter sulfurreducens. Biochemical Journal. 474:231–246., Number 2: Portland Press Limited AbstractWebsite

Accepted Manuscript online November 14, 2016.The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e-/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e-/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.EET, extracellular electron transfer; IM, inner membrane; IPTG, isopropyl β-d-thiogalactoside; MFCs, microbial fuel cells; NOE, Nuclear Overhauser effect; OM, outer membrane; rmsd, root mean square deviation.

2016
Salgueiro, CA, Dantas JM.  2016.  Multiheme Cytochromes. Multiheme Cytochromes. :1–39., Berlin, Heidelberg: Springer Berlin Heidelberg Abstract

n/a

Alves, MN, Fernandes AP, Salgueiro CA, Paquete CM.  2016.  Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens. BBA - Bioenergetics. 1857(1):7-13. AbstractWebsite

The extracellular electron transfer metabolism of Geobacter sulfurreducens is sustained by several multiheme c-type cytochromes. One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type cytochromes. GSU1996 is composed by four similar triheme domains (A-D). The C-terminal half of the molecule encompasses the domains C and D, which are connected by a small linker and the N-terminal half of the protein contains two domains (A and B) that form one structural unit. It was proposed that this protein works as an electrically conductive device in Geobacter sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. In this work, a novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of GSU1996 for the first time, showing that a heme at the edge of the C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from physiological redox partners. This information contributes towards understanding how this new sub-class of cytochromes functions as nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms in Geobacter sulfurreducens.

Dantas, JM, Simões T, Morgado L, Caciones C, Fernandes AP, Silva MA, Bruix M, Pokkuluri RP, Salgueiro CA.  2016.  Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens. The Journal of Physical Chemistry B. 120:10221-10233., Number 39 AbstractWebsite

A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e–/H+ transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conserved leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu6 in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e–/H+ pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe6 in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.

2015
Dantas, JM, Silva e Sousa M, Salgueiro CA, Bruix M.  2015.  Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens. Biomolecular NMR Assignments. 9(2):365-368. AbstractWebsite

Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

Dantas, JM, Salgueiro CA, Bruix M.  2015.  Backbone, side chain and heme resonance assignments of the triheme cytochrome PpcD from Geobacter sulfurreducens. Biomol NMR Assign. 9(1):211-214. AbstractWebsite

Gene knock-out studies on Geobacter sulfurreducens (Gs) cells showed that the periplasmic triheme cytochrome PpcD is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI) oxides. More recently, it was also shown that the gene encoding for PpcD has higher transcript abundance when Gs cells utilize graphite electrodes as sole electron donors to reduce fumarate. This sets PpcD as the first multiheme cytochrome to be involved in Gs respiratory pathways that bridge the electron transfer between the cytoplasm and cell exterior in both directions. Nowadays, extracellular electron transfer (EET) processes are explored for several biotechnological applications, which include bioremediation, bioenergy and biofuel production. Therefore, the structural characterization of PpcD is a fundamental step to understand the mechanisms underlying EET. However, compared to non-heme proteins, the presence of numerous proton-containing groups in the redox centers presents additional challenges for protein signal assignment and structure calculation. Here, we report the complete assignment of the heme proton signals together with 1H, 13C and 15N backbone and side chain assignments of the reduced form of PpcD.

Santos, TC, Silva MA, Morgado L, Dantas JM, Salgueiro CA.  2015.  Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer. Dalton Trans. 44(20):9335-9344. AbstractWebsite

Geobacter bacteria have a remarkable respiratory versatility that includes the dissimilatory reduction of insoluble metal oxides in natural habitats and electron transfer to electrode surfaces from which electricity can be harvested. In both cases, electrons need to be exported from the cell interior to the exterior via a mechanism designated as extracellular electron transfer (EET). Several c-type cytochromes from G. sulfurreducens (Gs) were identified as key players in this process. Biochemical and biophysical data have been obtained for ten Gs cytochromes, including inner-membrane associated (MacA), periplasmic (PpcA, PpcB, PpcC, PpcD, PpcE and GSU1996) and outer membrane-associated (OmcF, OmcS and OmcZ). The redox properties of these cytochromes have been determined, except for PpcC and GSU1996. In this perspective, the reduction potentials of these two cytochromes were determined by potentiometric redox titrations followed by visible spectroscopy. The data obtained are taken together with those available for other key cytochromes to present a thorough overview of the current knowledge of Gs EET mechanisms and provide a possible rationalization for the existence of several multiheme cytochromes involved in the same respiratory pathways.

Marques, AC, Santos L, Costa MN, Dantas JM, Duarte P, Gonçalves A, Martins R, Salgueiro CA, Fortunato E.  2015.  Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Sci. Rep. 5(9910) AbstractWebsite

Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

Dantas, JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR.  2015.  The structure of PccH from Geobacter sulfurreducens: a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 282(11):2215-2231. AbstractWebsite

The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.

Dantas, JM, Kokhan O, Pokkuluri RP, Salgueiro CA.  2015.  Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847:1129-1138., Number 10 AbstractWebsite

Abstract Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the \{HS\} analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for \{HS\} respiration in G. sulfurreducens, but the process is far from fully understood. In this work, \{NMR\} chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the \{AH2QDS\} binds reversibly to the more solvent exposed edge of PpcA heme IV. The \{NMR\} and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme İV\} (− 127 mV) compared to that of \{AH2QDS\} (− 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between \{AH2QDS\} and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the \{HS\} in any redox state available in the environment for its metabolic needs.