This work aimed at the development of targeted drug delivery systems using nanoparticles fused with antibodies. The antibody anti-human {CD8} was coupled onto {PLGA} nanoparticles, and the ability of these particles to specifically target cells expressing {CD8} was studied. The obtained particles were found to be of spherical shape exhibiting a size between 350 and 600 nm. In vitro experiments with different cellular cultures {(TE671}, {CHO} and {HEK293)} using unmodified nanoparticles containing rhodamine have shown that particles were present on their surface within 48 h of incubation. In vitro tests using {anti-CD8} conjugated nanoparticles in {CHO} cell cultures indicated that all transfected cells which express {CD8} show these particles on their surface within 1h of incubation. These results demonstrated that, in a shorter time, the produced particles can target cells expressing {CD8} on their surface which offers the ability to reduce drug side effects. The antibody-coupled nanoparticles represent a promising approach to improve the efficacy of active targeting for lymphoblastic leukaemia therapy.
{PMID:} 20696228