Pina, AS, Batalha IL, Roque ACA.
2014.
Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods. (
Labrou, Nikolaos, Ed.).:147-168.: Springer
AbstractThe reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Pina, AS, Lowe CR, Roque ACA.
2014.
Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnology Advances. 32(2):366-381.
AbstractThe purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.
Pina, AS, Guilherme M, Pereira AS, Fernandes CSM, Branco RJF, Lowe CR, Roque ACA.
2014.
A tailor made affinity pair “tag-receptor” for the purification of fusion proteins. ChemBioChem. 15(10):1423-35.
AbstractA novel affinity “tag–receptor” pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet-21c expression vector and expressed in E. coli host as soluble protein. A solid-phase combinatorial library based on the Ugi reaction was synthesized: 64 affinity ligands displaying complementary functionalities towards the designed tag. The library was screened by affinity chromatography in a 96-well format for binding to the RKRKRK-tagged GFP protein. Lead ligand A7C1 was selected for the purification of RKRKRK fusion proteins. The affinity pair RKRKRK-tagged GFP with A7C1 emerged as a promising solution (Ka of 2.45×105 M−1). The specificity of the ligand towards the tag was observed experimentally and theoretically through automated docking and molecular dynamics simulations.