Publications

Export 528 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Isolation and characterisation of metallothionein from the clam Ruditapes decussatus, Simes, D. C., Bebianno M. J., and Moura J. J. , Aquat Toxicol, May 8, Volume 63, Number 3, p.307-18, (2003) AbstractWebsite

Metallothioneins (MT) were obtained after purification from metal-exposed clams (Ruditapes decussatus) using gel-permeation and ion-exchange chromatography. Four cadmium-metallothioneins (CdMTs) were resolved by ion-exchange chromatography and they all had similar molecular weights, high cadmium content and an absorption spectra indicative of the presence of characteristic Cd-S aggregates. The NH(2)-terminal sequence suggests the presence of at least two class I clam MT isoforms. For the other two putative clam CdMTs isolated, the results of the amino acid determination were inconclusive. One was slightly contaminated and the other one had a blocked NH(2)-terminal. These clam metalothioneins contain glycine, which seems to be a common feature of molluscan MT family and exhibited more similarity to oysters than to mussels. Further investigation on the inducibility of these isoforms will be necessary if clams are to be used as biomarkers of metal exposure.

SERR spectroelectrochemical study of cytochrome cd1 nitrite reductase co-immobilized with physiological redox partner cytochrome c552 on biocompatible metal electrodes, Silveira, C. M., Quintas P. O., Moura I., Moura J. J. G., Hildebrandt P., Almeida M. G., and Todorovic S. , Plos One, Volume 10, p.e0129940, (2015)
Measuring the cytochrome c nitrite reductase activity-practical considerations on the enzyme assays, Silveira, C. M., Besson S., Moura I., Moura J. J., and Almeida M. G. , Bioinorg Chem Appl, (2010) AbstractWebsite

The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a systematic manner using two different spectrophotometric assays carried out in the presence of different redox mediators and a direct electrochemical approach. Solution assays have proved that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers and ammonium is always the main product of nitrite reduction. The catalytic parameters were discussed on the basis of the mediator reducing power and also taking into account the location of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst turnover increases with the reductive driving force.

Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes, Silveira, Celia M., Baur Jessica, Holzinger Michael, Moura Jose J. G., Cosnier Serge, and Gabriela Almeida M. , Electroanalysis, Dec, Volume 22, Number 24, p.2973-2978, (2010) AbstractWebsite

Single-walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10-fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4 +/- 0.1 A L mol(-1) cm(-2) and 1500 mu A cm(-2), respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90% and 60% of its initial sensitivity to nitrite after 20 and 248 days, respectively.

An efficient non-mediated amperometric biosensor for nitrite determination, Silveira, C. M., Gomes S. P., Araujo A. N., Montenegro M. C., Todorovic S., Viana A. S., Silva R. J., Moura J. J., and Almeida M. G. , Biosens Bioelectron, May 15, Volume 25, Number 9, p.2026-32, (2010) AbstractWebsite

In this paper we propose the construction of a new non-mediated electrochemical biosensor for nitrite determination in complex samples. The device is based on the stable and selective cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans, which has both high turnover and heterogeneous electron transfer rates. In opposition to previous efforts making use of several redox mediators, in this work we exploited the capacity of ccNiR to display a direct electrochemical response when interacting with pyrolytic graphite (PG) surfaces. To enable the analytical application of such bioelectrode the protein was successfully incorporated within a porous silica glass made by the sol-gel process. In the presence of nitrite, the ccNiR/sol-gel/PG electrode promptly displays catalytic currents indicating that the entrapped ccNiR molecules are reduced via direct electron transfer. This result is noteworthy since the protein molecules are caged inside a non-conductive silica network, in the absence of any mediator species or electron relay. At optimal conditions, the minimum detectable concentration is 120 nM. The biosensor sensitivity is 430 mA M(-1) cm(-2) within a linear range of 0.25-50 microM, keeping a stable response up to two weeks. The analysis of nitrites in freshwaters using the method of standard addition was highly accurated.

Desulforedoxin: Preliminary X-ray diffraction study of a new iron-containing protein, Sieker, L. C., Jensen L. H., Bruschi M., Legall J., Moura I., and Xavier A. V. , Journal of Molecular Biology, Volume 144, Number 4, p.593-594, (1980) AbstractWebsite
n/a
Desulforedoxin: proposed configuration and preliminary X-ray diffraction study of a two-iron two chain protein, Sieker, L. C., Bruschi M., Legall J., Moura I., and Xavier A. V. , Ciênc. Biol. (Portugal), Volume 5, p.145-147, (1980) Abstract
n/a
Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing, Serra, A. S., Jorge S. R., Silveira C. M., Moura J. J. G., Jubete E., Ochoteco E., Cabañero G., Grande H., and Almeida M. G. , Analytica Chimica Acta, Volume 693, Number 1–2, p.41-46, (2011) AbstractWebsite
n/a
X-ray absorption spectroscopy of nickel in the hydrogenase from Desulfovibrio gigas, Scott, Robert A., Wallin Sten A., Czechowski Melvin, Dervartanian D. V., Legall Jean, Peck Harry D., and Moura Isabel , Journal of the American Chemical Society, 1984/10/01, Volume 106, Number 22, p.6864-6865, (1984) AbstractWebsite
n/a
Nickel X-ray absorption spectroscopy of Desulvovibrio gigas hydrogenase, Scott, R. A., Czechowski M., Dervartanian D. V., Legall J., Peck Jr H. D., and Moura I. , Rev Portuguesa de Química, Volume 27, p.67-70, (1985) Abstract
n/a
Electrochemical studies on nitrite reductase towards a biosensor, Scharf, M., Moreno C., Costa C., Van Dijk C., Payne W. J., Legall J., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Apr 26, Volume 209, Number 3, p.1018-25, (1995) AbstractWebsite

A c-type hexaheme nitrite reductase (NiR) isolated from nitrate-grown cells of Desulfovibrio desulfuricans (Dd) ATCC 27774 catalyses the six-electron reduction of nitrite to ammonia. Previous electrochemical studies demonstrated that a simple electrocatalytic mechanism can be applied to this system (Moreno, C., Costa, C., Moura, I., LeGall, J., Liu, M. Y., Payne, W. J., Van Dijk, C. and Moura, J. J. G. (1992) Eur.J.Biochem. 212, 79-86). Its substrate specificity, availability and stability under ambient conditions makes this enzymatic system a promising candidate for use in a biosensor device. An electrochemical study of gel-immobilized Dd NiR on a glassy carbon electrode revealed both enzymatic activity and amperometric response to nitrite. In this study it was observed that the catalytic current density is a function of the nitrite concentration in solution and follows a characteristic Michaelis-Menten-type substrate dependence. Such a biosensor device (NiR-electrode) bears the option to be used for analytical determination of nitrite in complex media.

Metabolic adaptations induced by long-term fasting in quails, Sartori, D. R., Migliorini R. H., Veiga J. A., Moura J. L., Kettelhut I. C., and Linder C. , Comp Biochem Physiol A Physiol, Jul, Volume 111, Number 3, p.487-93, (1995) AbstractWebsite

After up to 21 days without food, adult male quails (Coturnix coturnix japonica) lost about 45% of the initial body weight (100-150 g). As in naturally fast-adapted and larger birds, three phases were identified during prolonged fasting in quails. Phase I lasted 2-3 days and was characterized by a rapid decrease in the rate of body weight loss and high fat mobilization. Phase II was longer and characterized by a slow and steady decline in the rates of body weight loss and of nitrogen excretion. The third (critical) period was marked by an abrupt increase in the rates of body weight loss and of nitrogen excretion. Despite their small size, the duration of phase II in quails was relatively long, a clear advantage for the study of the relationships between the several metabolic events that occur during this crucial adaptative period. Also, the beginning of phase III could be precisely determined. Changes in blood glucose, plasma FFA and triacylglycerols levels, as well as in liver and carcass lipid content were similar to those found in other species of birds. Therefore, quails seem to be a suitable model to investigate the biochemical mechanisms involved in the metabolic adjustments to prolonged food deprivation in non fasting-adapted birds.

Purification and Preliminary Characterization of Three C-Type Cytochromes from Pseudomonas Nautica Strain 617, Saraiva, L. M., Besson S., Moura I., and Fauque G. , Biochemical and Biophysical Research Communications, Volume 212, Number 3, p.1088-1097, (1995) AbstractWebsite
n/a
Characterization of the Dihemic Cytochrome C549 from the Marine Denitrifying Bacterium Pseudomonas nautica 617, Saraiva, L. M., Besson S., Fauque G., and Moura I. , Biochemical and Biophysical Research Communications, Volume 199, Number 3, p.1289-1296, (1994) AbstractWebsite
n/a
NMR and EPR studies on a monoheme cytochrome c550 isolated from Bacillus halodenitrificans, Saraiva, Lígia M., Denariaz Gerard, Liu Ming- Y., Payne William J., Legall Jean, and Moura Isabel , European Journal of Biochemistry, Volume 204, Number 3, p.1131-1139, (1992) AbstractWebsite

A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme–methionine coordination. The mid-point redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax∼ 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax∼ 3.5 converts mainly to a signal at g∼ 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.

Replacement of Methionine as the Axial Ligand of Achromobacter cycloclastes Cytochrome C554 at High pH Values Revealed by Absorption, EPR and MCD Spectroscopy, Saraiva, L. M., Thomson A. J., Lebrun N. E., Liu M. Y., Payne W. J., Legall J., and Moura I. , Biochemical and Biophysical Research Communications, Volume 204, Number 1, p.120-128, (1994) AbstractWebsite
n/a
Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism, Saraiva, L. M., Liu M. Y., Payne W. J., Legall J., Moura J. J., and Moura I. , Eur J Biochem, Apr 30, Volume 189, Number 2, p.333-41, (1990) AbstractWebsite

A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.

Physico-chemical and Spectroscopic Properties of the Monohemic Cytochrome C552 from Pseudomonas nautica 617, Saraiva, Lígia M., Fauque Guy, Besson Stéphane, and Moura Isabel , European Journal of Biochemistry, Volume 224, Number 3, p.1011-1017, (1994) AbstractWebsite

A c-type monohemic ferricytochrome c552 (11 kDa) was isolated from the soluble extract of a marine denitrifier, Pseudomonas nautica strain 617, grown under anaerobic conditions with nitrate as final electron acceptor. The NH2-terminal sequence and the amino acid composition of the cytochrome were determined. The heme iron of the cytochrome c552 has histidine-methionine as axial ligands, and a pH-dependent mid-point redox potential, equal to 250 mV at pH 7.6. The presence of methionine was demonstrated by visible, EPR and NMR spectroscopies. The assignment of most of the hemic protons was performed applying two-dimensional NOE spectroscopy (NOESY), and the aromatic region was assigned through two-dimensional correlated spectroscopy (COSY) experiments. The EPR spectrum of the oxidised form of the cytochrome c552 is typical of a low-spin ferric heme.

Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays, Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Moura I., Moura J. J., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Nov 1, Volume 61, Number Pt 11, p.967-70, (2005) AbstractWebsite

Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P2(1) (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A, beta = 106.9 degrees) and diffracted beyond 1.60 A resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A, beta = 104.9 degrees) and diffracted beyond 1.55 A. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (lambda = 1.542 A) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2(1) data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

The first crystal structure of class III superoxide reductase from Treponema pallidum, Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Raleiras P., Moura I., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.548-58, (2006) AbstractWebsite

Superoxide reductase (SOR) is a metalloprotein containing a non-heme iron centre, responsible for the scavenging of superoxide radicals in the cell. The crystal structure of Treponema pallidum (Tp) SOR was determined using soft X-rays and synchrotron radiation. Crystals of the oxidized form were obtained using poly(ethylene glycol) and MgCl2 and diffracted beyond 1.55 A resolution. The overall architecture is very similar to that of other known SORs but TpSOR contains an N-terminal domain in which the desulforedoxin-type Fe centre, found in other SORs, is absent. This domain conserves the beta-barrel topology with an overall arrangement very similar to that of other SOR proteins where the centre is present. The absence of the iron ion and its ligands, however, causes a decrease in the cohesion of the domain and some disorder is observed, particularly in the region where the metal would be harboured. The C-terminal domain exhibits the characteristic immunoglobulin-like fold and harbours the Fe(His)4(Cys) active site. The five ligands of the iron centre are well conserved despite some disorder observed for one of the four molecules in the asymmetric unit. The participation of a glutamate as the sixth ligand of some of the iron centres in Pyrococcus furiosus SOR was not observed in TpSOR. A possible explanation is that either X-ray photoreduction occurred or there was a mixture of redox states at the start of data collection. In agreement with earlier proposals, details in the TpSOR structure also suggest that Lys49 might be involved in attraction of superoxide to the active site.

Crystallization and preliminary X-ray diffraction analysis of the 16-haem cytochrome of Desulfovibrio gigas, Santos-Silva, T., Diasa J. M., Bourenkov G., Bartunik H., Moura I., and Romao M. J. , Acta Crystallographica Section D-Biological Crystallography, May, Volume 60, p.968-970, (2004) AbstractWebsite

High-molecular-weight cytochromes (Hmcs) belong to a large family of multihaem cytochromes in sulfate-reducing bacteria. HmcA is the first cytochrome reported to have 16 c-type haems arranged in its polypeptide chain. The function of this cytochrome is still unknown, although it is clear that it belongs to a membrane-bound complex involved in electron transfer from the periplasm to the membrane. HmcA from Desulfovibrio gigas has been purified and successfully crystallized using the hanging-drop vapour-diffusion method. The crystals grew using PEG and zinc acetate as precipitants to maximum dimensions of 0.2 x 0.2 x 0.2 mm in an orthorhombic space group, with unit-cell parameters a = 88.9, b = 90.9, c = 83.7 Angstrom. The crystals diffracted to beyond 2.07 Angstrom and a MAD data set was collected.

Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system, Santos-Silva, T., Ferroni F., Thapper A., Marangon J., Gonzalez P. J., Rizzi A. C., Moura I., Moura J. J., Romao M. J., and Brondino C. D. , J Am Chem Soc, Jun 17, Volume 131, Number 23, p.7990-8, (2009) AbstractWebsite

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.

Crystal structure of the 16 heme cytochrome from Desulfovibrio gigas: A glycosylated protein in a sulphate-reducing bacterium, Santos-Silva, Teresa, Dias Joao Miguel, Dolla Alain, Durand Marie-Claire, Goncalves Luisa L., Lampreia Jorge, Moura Isabel, and Romao Maria Joao , Journal of Molecular Biology, Jul 20, Volume 370, Number 4, p.659-673, (2007) AbstractWebsite

Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown. using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 angstrom resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane. (c) 2007 Elsevier Ltd. All rights reserved.

NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3, Santos, H., Moura J. J., Moura I., Legall J., and Xavier A. V. , Eur J Biochem, Jun 1, Volume 141, Number 2, p.283-96, (1984) AbstractWebsite

The proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio gigas were examined while varying the pH and the redox potential. The analysis of the NMR reoxidation pattern was based on a model for the electron distribution between the four haems that takes into account haem-haem redox interactions. The intramolecular electron exchange is fast on the NMR time scale (larger than 10(5) s-1). The NMR data concerning the pH dependence of the chemical shift of haem methyl resonances in different oxidation steps and resonance intensities are not compatible with a non-interacting model and can be explained assuming a redox interaction between the haems. A complete analysis at pH* = 7.2 and 9.6, shows that the haem-haem interacting potentials cover a range from -50 mV to +60 mV. The midpoint redox potentials of some of the haems, as well as some of their interacting potentials, are pH-dependent. The physiological relevance of the modulation of the haem midpoint redox potentials by both the pH and the redox potential of the solution is discussed.