Publications

Export 528 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase, Thoenes, U., Flores O. L., Neves A., Devreese B., Van Beeumen J. J., Huber R., Romao M. J., Legall J., Moura J. J., and Rodrigues-Pousada C. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.901-10, (1994) AbstractWebsite

In this report, we describe the isolation of a 4020-bp genomic PstI fragment of Desulfovibrio gigas harboring the aldehyde oxido-reductase gene. The aldehyde oxido-reductase gene spans 2718 bp of genomic DNA and codes for a protein with 906 residues. The protein sequence shows an average 52% (+/- 1.5%) similarity to xanthine dehydrogenase from different organisms. The codon usage of the aldehyde oxidoreductase is almost identical to a calculated codon usage of the Desulfovibrio bacteria.

Copper-substituted forms of the wild type and C42A variant of rubredoxin, Thapper, A., Rizzi A. C., Brondino C. D., Wedd A. G., Pais R. J., Maiti B. K., Moura I., Pauleta S. R., and Moura J. J. G. , J Inorg Biochem, Volume 127, p.232-237, (2013)
Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase, Thapper, A., Boer D. R., Brondino C. D., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Mar, Volume 12, Number 3, p.353-66, (2007) AbstractWebsite

Two arsenite-inhibited forms of each of the aldehyde oxidoreductases from Desulfovibrio gigas and Desulfovibrio desulfuricans have been studied by X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. The molybdenum site of these enzymes shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. Arsenite addition to active as-prepared enzyme or to a reduced desulfo form yields two different species called A and B, respectively, which show different Mo(V) EPR signals. Both EPR signals show strong hyperfine and quadrupolar couplings with an arsenic nucleus, which suggests that arsenic interacts with molybdenum through an equatorial ligand. X-ray data of single crystals prepared from EPR-active samples show in both inhibited forms that the arsenic atom interacts with the molybdenum ion through an oxygen atom at the catalytic labile site and that the sulfido ligand is no longer present. EPR and X-ray data indicate that the main difference between both species is an equatorial ligand to molybdenum which was determined to be an oxo ligand in species A and a hydroxyl/water ligand in species B. The conclusion that the sulfido ligand is not essential to determine the EPR properties in both Mo-As complexes is achieved through EPR measurements on a substantial number of randomly oriented chemically reduced crystals immediately followed by X-ray studies on one of those crystals. EPR saturation studies show that the electron transfer pathway, which is essential for catalysis, is not modified upon inhibition.

Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus, Thapper, A., Rivas M. G., Brondino C. D., Ollivier B., Fauque G., Moura I., and Moura J. J. , J Inorg Biochem, Jan, Volume 100, Number 1, p.44-50, (2006) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.

The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mossbauer characterization, Teixeira, M., Moura I., Fauque G., Dervartanian D. V., Legall J., Peck, H. D. Jr., Moura J. J., and Huynh B. H. , Eur J Biochem, Apr 30, Volume 189, Number 2, p.381-6, (1990) AbstractWebsite

The soluble (cytoplasmic plus periplasmic) Ni/Fe-S/Se-containing hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from cells grown in an 57Fe-enriched medium, and its iron-sulfur centers were extensively characterized by Mossbauer and EPR spectroscopies. The data analysis excludes the presence of a [3Fe-4S] center, either in the native (as isolated) or in the hydrogen-reduced states. In the native state, the non-heme iron atoms are arranged as two diamagnetic [4Fe-4S]2+ centers. Upon reduction, these two centers exhibit distinct and unusual Mossbauer spectroscopic parameters. The centers were found to have similar mid-point potentials (approximately -315 mV) as determined by oxidation-reduction titratins followed by EPR.

Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Teixeira, M., Fauque G., Moura I., Lespinat P. A., Berlier Y., Prickril B., Peck, H. D. Jr., Xavier A. V., Legall J., and Moura J. J. , Eur J Biochem, Aug 17, Volume 167, Number 1, p.47-58, (1987) AbstractWebsite

The hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from each of three different fractions: soluble periplasmic (wash), soluble cytoplasmic (cell disruption) and membrane-bound (detergent solubilization). Plasma-emission metal analysis detected in all three fractions the presence of iron plus nickel and selenium in equimolecular amounts. These hydrogenases were shown to be composed of two non-identical subunits and were distinct with respect to their spectroscopic properties. The EPR spectra of the native (as isolated) enzymes showed very weak isotropic signals centered around g approximately 2.0 when observed at low temperature (below 20 K). The periplasmic and membrane-bound enzymes also presented additional EPR signals, observable up to 77 K, with g greater than 2.0 and assigned to nickel(III). The periplasmic hydrogenase exhibited EPR features at 2.20, 2.06 and 2.0. The signals observed in the membrane-bound preparations could be decomposed into two sets with g at 2.34, 2.16 and approximately 2.0 (component I) and at 2.33, 2.24, and approximately 2.0 (component II). In the reduced state, after exposure to an H2 atmosphere, all the hydrogenase fractions gave identical EPR spectra. EPR studies, performed at different temperatures and microwave powers, and in samples partially and fully reduced (under hydrogen or dithionite), allowed the identification of two different iron-sulfur centers: center I (2.03, 1.89 and 1.86) detectable below 10 K, and center II (2.06, 1.95 and 1.88) which was easily saturated at low temperatures. Additional EPR signals due to transient nickel species were detected with g greater than 2.0, and a rhombic EPR signal at 77 K developed at g 2.20, 2.16 and 2.0. This EPR signal is reminiscent of the Ni-signal C (g at 2.19, 2.14 and 2.02) observed in intermediate redox states of the well characterized Desulfovibrio gigas hydrogenase (Teixeira et al. (1985) J. Biol. Chem. 260, 8942]. During the course of a redox titration at pH 7.6 using H2 gas as reductant, this signal attained a maximal intensity around -320 mV. Low-temperature studies of samples at redox states where this rhombic signal develops (10 K or lower) revealed the presence of a fast-relaxing complex EPR signal with g at 2.25, 2.22, 2.15, 2.12, 2.10 and broad components at higher field. The soluble hydrogenase fractions did not show a time-dependent activation but the membrane-bound form required such a step in order to express full activity.(ABSTRACT TRUNCATED AT 400 WORDS)

Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens, Teixeira, L. R., Dantas J. M., Salgueiro C. A., and Cordas C. M. , BBA - Bioenergetics, Volume 1859, p.1132-1137, (2018) Website
Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers, Teixeira, M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck, H. D. Jr., Huynh B. H., and Moura J. J. , Eur J Biochem, Feb 15, Volume 130, Number 3, p.481-4, (1983) AbstractWebsite

Below 30 K, oxidized Desulfovibrio gigas hydrogenase presents an intense electron paramagnetic resonance (EPR) signal centered at g = 2.02, typical of an iron-sulfur center. In addition a rhombic EPR signal, attributed to Ni(III) species, is also observed [LeGall, J., Ljungdahl, P., Moura, I., Peck, H.D., Jr, Xavier, A.V., Moura, J.J.G., Teixeira, M., Huynh, B.H., and DerVartanian, D.V. (1982) Biochem. Biophys. Res. Commun. 106, 610-616; and Cammack, R., Patil, D., Aguirre, R., and Hatchikian, E.C., (1982) FEBS Lett. 142, 289-292]. At higher temperatures (77 K) the iron-sulfur EPR signal is broader and all the EPR features of the rhombic nickel signal can easily be observed. We have now obtained additional information concerning the redox properties of these EPR active centers, using an EPR redox titration method in the presence of dye mediators at pH = 8.5. The mid-point potential was determined to be -70 mV for the Fe,S cluster and -220 mV for the Ni center. Intermediate oxidation states were obtained upon partial reduction with either dithionite or hydrogen. Although upon dithionite reduction the centers are reduced in the order of decreasing mid-point reduction potentials, under a hydrogen atmosphere the nickel center reduces preferentially. This suggests a catalytic involvement of the nickel redox center in the binding of hydrogen. Preliminary Mossbauer studies on Desulfovibrio gigas hydrogenase reveal the presence of a paramagnetic 3 Fe center and two 4 Fe centers. The 3 Fe center is responsible for the g = 2.02 EPR signal but the two 4 Fe centers have been so far undetectable by EPR.

Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, Teixeira, M., Moura I., Xavier A. V., Huynh B. H., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Moura J. J. , J Biol Chem, Jul 25, Volume 260, Number 15, p.8942-50, (1985) AbstractWebsite

Desulfovibrio gigas hydrogenase (EC 1.12.2.1) is a complex enzyme containing one nickel, one 3Fe, and two [Fe4S4] clusters (Teixeira, M., Moura, I., Xavier, A. V., Der Vartanian, D. V., LeGall, J., Peck, H. D., Jr., Huynh, B. H., and Moura, J. J. G. (1983) Eur. J. Biochem. 130, 481-484). This hydrogenase belongs to a class of enzymes that are inactive "as isolated" (the so-called "oxygen-stable hydrogenases") and must go through an activation process in order to express full activity. The state of characterization of the active centers of the enzyme as isolated prompted us to do a detailed analysis of the redox patterns, activation profile, and catalytic redox cycle of the enzyme in the presence of either the natural substrate (H2) or chemical reductants. The effect of natural cofactors, as cytochrome C3, was also studied. Special focus was given to the intermediate redox species generated during the catalytic cycle of the enzyme and to the midpoint redox potentials associated. The available information is discussed in terms of a "working hypothesis" for the mechanism of the [NiFe] hydrogenases from sulfate reducing organisms in the context of activation process and catalytic cycle.

Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mossbauer and EPR characterization of the metal centers, Teixeira, M., Moura I., Xavier A. V., Moura J. J., Legall J., Dervartanian D. V., Peck, H. D. Jr., and Huynh B. H. , J Biol Chem, Oct 5, Volume 264, Number 28, p.16435-50, (1989) AbstractWebsite

The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and Mossbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.

Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Teixeira, M., Moura I., Fauque G., Czechowski M., Berlier Y., Lespinat P. A., Legall J., Xavier A. V., and Moura J. J. , Biochimie, Jan, Volume 68, Number 1, p.75-84, (1986) AbstractWebsite

A soluble hydrogenase from the halophilic sulfate reducing bacterium Desulfovibrio salexigens, strain British Guiana (NCIB 8403) has been purified to apparent homogeneity with a final specific activity of 760 mumoles H2 evolved/min/mg (an overall 180-fold purification with 20% recovery yield). The enzyme is composed of two non-identical subunits of molecular masses 62 and 36 kDa, respectively, and contains approximately 1 Ni, 12-15 Fe and 1 Se atoms/mole. The hydrogenase shows a visible absorption spectrum typical of an iron-sulfur containing protein (A400/A280 = 0.275) and a molar absorbance of 54 mM-1cm-1 at 400 nm. In the native state (as isolated, under aerobic conditions), the enzyme is almost EPR silent at 100 K and below. However, upon reduction under H2 atmosphere a rhombic EPR signal develops at g-values 2.22, 2.16 and around 2.0, which is optimally detected at 40 K. This EPR signal is reminiscent of the nickel signal C (g-values 2.19, 2.16 and 2.02) observed in intermediate redox states of the well characterized D. gigas nickel containing hydrogenase and assigned to nickel by 61 Ni isotopic substitution (J.J.G. Moura, M. Teixeira, I. Moura, A.V. Xavier and J. Le Gall (1984), J. Mol. Cat., 23, 305-314). Upon longer incubation with H2 the "2.22" EPR signal decreases. During the course of a redox titration under H2, this EPR signal attains a maximal intensity around--380 mV. At redox states where this "2.22" signal develops (or at lower redox potentials), low temperature studies (below 10 K) reveals the presence of other EPR species with g-values at 2.23, 2.21, 2.14 with broad components at higher fields. This new signal (fast relaxing) exhibits a different microwave power dependence from that of the "2.22" signal, which readily saturates with microwave power (slow relaxing). Also at low temperature (8 K) typical reduced iron-sulfur EPR signals are concomitantly observed with gmed approximately 1.94. The catalytic properties of the enzyme were also followed by substrate isotopic exchange D2/H+ and H2 production measurements.

Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Metalloenzymes of the denitrification pathway, Tavares, P., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, Dec, Volume 100, Number 12, p.2087-100, (2006) AbstractWebsite

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification.

Total synthesis of a simple metalloprotein-desulforedoxin, Tavares, P., Wunderlich J. K., Lloyd S. G., Legall J., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Mar 17, Volume 208, Number 2, p.680-7, (1995) AbstractWebsite

Desulforedoxin is a protein purified from cellular extracts of Desulfovibrio gigas. It is a small (7.9 kDa) dimeric protein that contains a distorted rubredoxin like center (one single iron coordinated by four cysteinyl residues). Due to the simplicity of the polypeptide chain and of the iron center, an attempt was made to chemically produce this protein. A 36 amino acid polypeptide chain was synthesized based on the known sequence of native Desulforedoxin. The iron center was then reconstituted and the biochemical and spectroscopic characteristics of this synthetic protein were investigated. The final product has an equal sequence to the protein purified from D. gigas. The synthetic and natural Dx are very similar, in terms redox potential and spectroscopic properties (UV-Visible, EPR, Mossbauer).

Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774), Tavares, P., Ravi N., Moura J. J., Legall J., Huang Y. H., Crouse B. R., Johnson M. K., Huynh B. H., and Moura I. , J Biol Chem, Apr 8, Volume 269, Number 14, p.10504-10, (1994) AbstractWebsite

Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mossbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal at g = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximately 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mossbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mossbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S-->Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.

S
Evidence for the formation of a ZnFe3S4 cluster in Desulfovibrio gigas ferredoxin II, Surerus, Kristene K., Munck Eckard, Moura Isabel, Moura Jose J. G., and Legall Jean , Journal of the American Chemical Society, 1987/06/01, Volume 109, Number 12, p.3805-3807, (1987) AbstractWebsite
n/a
A hypothetical model of the flavodoxin-tetraheme cytochrome c3 complex of sulfate-reducing bacteria, Stewart, D. E., Legall J., Moura I., Moura J. J., Peck, H. D. Jr., Xavier A. V., Weiner P. K., and Wampler J. E. , Biochemistry, Apr 5, Volume 27, Number 7, p.2444-50, (1988) AbstractWebsite

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 electron-transfer complex from the sulfate-reducing bacterium Desulfovibrio vulgaris has been constructed by using interactive computer graphics based on electrostatic potential field calculations and previous NMR experiments. Features of the proposed complex are (1) van der Waals contact between the flavin mononucleotide prosthetic group of flavodoxin and one heme of the cytochrome, (2) unique complementarity of electrostatic fields between the region surrounding this heme and the region surrounding the exposed portion of the flavin mononucleotide group of flavodoxin, and (3) no steric interferences between the two polypeptide chains in the complex. This complex is consistent with all structural and spectroscopic data available.

Electron transport in sulfate-reducing bacteria. Molecular modeling and NMR studies of the rubredoxin--tetraheme-cytochrome-c3 complex, Stewart, D. E., Legall J., Moura I., Moura J. J., Peck, H. D. Jr., Xavier A. V., Weiner P. K., and Wampler J. E. , Eur J Biochem, Nov 20, Volume 185, Number 3, p.695-700, (1989) AbstractWebsite

A hypothetical model of the complex formed between the iron-sulfur protein rubredoxin and the tetraheme cytochrome c3 from the sulfate-reducing bacteria Desulfovibrio vulgaris (Hildenborough) has been proposed utilizing computer graphic modeling, computational methods and NMR spectroscopy. The proposed complex appears feasible on the basis of complementary electrostatic interaction and steric factors and is consistent with the data from NMR experiments. In this model, the non-heme iron atom of rubredoxin is in close proximity to heme 1 of cytochrome c3. The complex is stabilized by charge-pair interactions and hydrogen bonds. This complex is compared to the flavodoxin-cytochrome c3 complex previously proposed [Stewart, D. E., LeGall, J., Moura, I., Moura, J. J. G., Peck, H. D. Jr, Xavier, A. V., Weiner, P. K. & Wampler, J. E. (1988) Biochemistry 27, 2444-2450] and new NMR data shows that both proteins interact with the same heme group of the cytochrome as postulated.

Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to different electron acceptors - biosynthetic costs modulate substrate selection, Sousa, J. R., Silveira C. M., Fontes P., Roma-Rodrigues C., Fernandes A. R., Van Driessche G., Devreese B., Moura I., Moura J. J. G., and Almeida M. G. , Biochim Biophys Acta, Volume 1865, p.1455-1469, (2017)
Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry, Sousa, E. H. S., Diógenes I. C. N., Lopes L. G. F., and Moura J. J. G. , J Biol Inorg Chem, Volume 25, p.685, (2020)
Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P. pantotrophus pseudoazurin: kinetics of intermolecular electron transfer, de Sousa, P. M., Pauleta S. R., Goncalves M. L., Pettigrew G. W., Moura I., Dos Santos M. M., and Moura J. J. , J Biol Inorg Chem, Jun, Volume 12, Number 5, p.691-8, (2007) AbstractWebsite

This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.

Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes, Sola, S., Brito M. A., Brites D., Moura J. J. G., and Rodrigues C. M. P. , Clinical Science, Nov, Volume 103, Number 5, p.475-485, (2002) AbstractWebsite

The accumulation of toxic bile salts within the hepatocyte plays a key role in organ injury during liver disease. Deoxycholate (DC) and glycochenodeoxycholate (GCDC) induce apoptosis in vitro and in vivo, perhaps through direct perturbation of mitochondrial membrane structure and function. In contrast, ursodeoxycholate (UDC) and its taurine-conjugated form (TUDC) appear to be protective. We show here that hydrophobic bile salts induced apoptosis in cultured rat hepatocytes, without modulating the expression of pro-apoptotic Bax protein, and caused cytochrome c release in isolated mitochondria. Co-incubation with UDC and TUDC prevented cell death and efflux of mitochondrial factors. Using spin-labelling techniques and EPR spectroscopy analysis of isolated rat liver mitochondria, we found significant structural changes at the membrane-water surface in mitochondria exposed to hydrophobic bile salts, including modified lipid polarity and fluidity, altered protein order and increased oxidative injury. UDC, TUDC and cyclosporin A almost completely abrogated DC- and GCDC-induced membrane perturbations. We conclude that the toxicity of hydrophobic bile salts to hepatocytes is mediated by cytochrome c release, through a mechanism associated with marked direct effects on mitochondrial membrane lipid polarity and fluidity, protein order and redox status, without modulation of pro-apoptotic Bax expression. UDC and TUDC can directly suppress disruption of mitochondrial membrane structure, which may represent an important mechanism of hepatoprotection by these bile salts.

Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration, Soares, S. S., Martins H., Duarte R. O., Moura J. J., Coucelo J., Gutierrez-Merino C., and Aureliano M. , J Inorg Biochem, Jan, Volume 101, Number 1, p.80-8, (2007) AbstractWebsite

The contribution of decameric vanadate species to vanadate toxic effects in cardiac muscle was studied following an intravenous administration of a decavanadate solution (1mM total vanadium) in Sparus aurata. Although decameric vanadate is unstable in the assay medium, it decomposes with a half-life time of 16 allowing studying its effects not only in vitro but also in vivo. After 1, 6 and 12h upon decavanadate administration the increase of vanadium in blood plasma, red blood cells and in cardiac mitochondria and cytosol is not affected in comparison to the administration of a metavanadate solution containing labile oxovanadates. Cardiac tissue lipid peroxidation increases up to 20%, 1, 6 and 12h after metavanadate administration, whilst for decavanadate no effects were observed except 1h after treatment (+20%). Metavanadate administration clearly differs from decavanadate by enhancing, 12h after exposure, mitochondrial superoxide dismutase (SOD) activity (+115%) and not affecting catalase (CAT) activity whereas decavanadate increases SOD activity by 20% and decreases (-55%) mitochondrial CAT activity. At early times of exposure, 1 and 6h, the only effect observed upon decavanadate administration was the increase by 20% of SOD activity. In conclusion, decavanadate has a different response pattern of lipid peroxidation and oxidative stress markers, in spite of the same vanadium distribution in cardiac cells observed after decavanadate and metavanadate administration. It is suggested that once formed decameric vanadate species has a different reactivity than vanadate, thus, pointing out that the differential contribution of vanadium oligomers should be taken into account to rationalize in vivo vanadate toxicity.

Metal ion binding of copper(II), zinc(II) and lead(II) to cytochrome C, Simões Gonçalves, M. L. S., Lopes da Conceição A. C., and Moura J. J. G. , Electrochimica Acta, Volume 35, Number 2, p.473-478, (1990) AbstractWebsite
n/a