Publications

Export 38 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
A
Proteómica: a Interface entre a Biologia Molecular e a Biochemistry de Proteínas, Almeida, G., Rodrigues C., and Lampreia J. , Bol. Soc. Port. Química, Volume 82, p.49-56, (2001) Abstract
n/a
Predicting Protein-Protein Interactions Using BiGGER: Case Studies, Almeida, R. M., Dell'Acqua S., Krippahl L., Moura J. J. G., and Pauleta S. R. , Molecules, Volume 21, p.1037, (2016) Website
Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Almendra, M. J., Brondino C. D., Gavel O., Pereira A. S., Tavares P., Bursakov S., Duarte R., Caldeira J., Moura J. J., and Moura I. , Biochemistry, Dec 7, Volume 38, Number 49, p.16366-72, (1999) AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

B
Purification, characterization and biological activity of three forms of ferredoxin from the sulfate-reducing bacterium Desulfovibrio gigas, Bruschi, M., Hatchikian C., Legall J., Moura J. J., and Xavier A. V. , Biochim Biophys Acta, Nov 9, Volume 449, Number 2, p.275-84, (1976) AbstractWebsite

Three forms of ferredoxin FdI, FdI', and FdII have been isolated from Desulfovibrio gigas, a sulfate reducer. They are separated by a combination of DEAE-cellulose and gel filtration chromatographic procedures. FdI and FdI' present a slight difference in isoelectric point which enables the separation of the two forms over DEAE-cellulose, while FdII is easily separated from the two other forms by gel filtration. The three forms have the same amino acid composition and are isolated in different aggregation states. Molecular weight determinations by gel filtration gave values of 18 000 for FdI and FdI' and 24 000 for FdII, whereas a value of 6000 is determined when dissociation is accomplished with sodium dodecyl sulfate. The electronic spectra are different and their ultraviolet-visible absorbance rations are 0.77, 0.87 and 0.68 respectively for FdI, FdI' and FdII. Despite these differences, the physiological activities of the three forms are similar as far as the reduction of sulfite by molecular hydrogen is concerned.

The photochemical reaction between uranyl nitrate and azulene, Burrows, Hugh D., Cardoso Augusto C., Formosinho Sebastião J., Gil Ana M. P. C., da Miguel Maria Graça M., Barata Belamino, and J.G. Moura José , Journal of Photochemistry and Photobiology A: Chemistry, Volume 68, Number 3, p.279-287, (1992) AbstractWebsite
n/a
The photochemical reaction between uranyl-nitrate and azulene, Burrows, H. D., Cardoso A. C., Formosinho S. J., Gil Ampc, Miguel M. D., Barata B., and Moura J. J. G. , Journal of Photochemistry and Photobiology a-Chemistry, Sep 30, Volume 68, Number 3, p.279-287, (1992) AbstractWebsite

On photolysis of solutions of azulene and uranyl nitrate in alcohols, a dark, amorphous precipitate is formed. Various analytical techniques show that this is a mixture of a uranium salt and an organic component, suggested to be polyazulene. The effects of various parameters on the yield of the product have been studied and it is found that oxygen facilitates the reaction. Electron spin resonance studies show that the product is paramagnetic, in agreement with the established ease of oxidation of polyazulene, and suggest that it is formed via electron transfer from azulene to excited uranyl ion, followed by successive dimerizations and deprotonations of radical cation intermediates.

C
Primary sequence, oxidation-reduction potentials and tertiary-structure prediction of Desulfovibrio desulfuricans ATCC 27774 flavodoxin, Caldeira, J., Palma P. N., Regalla M., Lampreia J., Calvete J., Schafer W., Legall J., Moura I., and Moura J. J. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.987-95, (1994) AbstractWebsite

Flavodoxin was isolated and purified from Desulfovibrio desulfuricans ATCC 27774, a sulfate-reducing organism that can also utilize nitrate as an alternative electron acceptor. Mid-point oxidation-reduction potentials of this flavodoxin were determined by ultraviolet/visible and EPR methods coupled to potentiometric measurements and their pH dependence studied in detail. The redox potential E2, for the couple oxidized/semiquinone forms at pH 6.7 and 25 degrees C is -40 mV, while the value for the semiquinone/hydroquinone forms (E1), at the same pH, -387 mV. E2 varies linearly with pH, while E1 is independent of pH at high values. However, at low pH (< 7.0), this value is less negative, compatible with a redox-linked protonation of the flavodoxin hydroquinone. A comparative study is presented for Desulfovibrio salexigens NCIB 8403 flavodoxin [Moura, I., Moura, J.J.G., Bruschi, M. & LeGall, J. (1980) Biochim. Biophys. Acta 591, 1-8]. The complete primary amino acid sequence was obtained by automated Edman degradation from peptides obtained by chemical and enzymic procedures. The amino acid sequence was confirmed by FAB/MS. Using the previously determined tridimensional structure of Desulfovibrio vulgaris flavodoxin as a model [similarity, 48.6%; Watenpaugh, K.D., Sieker, L.C., Jensen, L.H., LeGall, J. & Dubourdieu M. (1972) Proc. Natl Acad. Sci. USA 69, 3185-3188], the tridimensional structure of D. desulfuricans ATCC 27774 flavodoxin was predicted using AMBER force-field calculations.

Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities, Cerqueira, N., Gonzalez P. J., Fernandes P. A., Moura J. J. G., and Ramos M. J. , Acc Chem Res, Volume 48, p.2875−2884, (2015)
Preliminary crystallographic analysis of the oxidized form of a two mono-nuclear iron centres protein from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Carrondo M. A., Tavares P., Moura J. J., Moura I., Fulop V., Hajdu J., and Legall J. , Protein Sci, Jun, Volume 5, Number 6, p.1189-91, (1996) AbstractWebsite

Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 A and c = 63.2 A; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 A, b = 80.9 A, c = 53.9 A, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function.

Preliminary crystallographic analysis and further characterization of a dodecaheme cytochrome c from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Sieker L. C., Morais J., Carrondo M. A., Lampreia J., Costa C., Moura J. J., Moura I., and Legall J. , Acta Crystallogr D Biol Crystallogr, Nov 1, Volume 52, Number Pt 6, p.1202-8, (1996) AbstractWebsite

Dodecaheme cytochrome c has been purified from Desulfovibrio (D.) desulfuricans ATCC 27774 cells grown under both nitrate and sulfate-respiring conditions. Therefore, it is likely to play a role in the electron-transfer system of both respiratory chains. Its molecular mass (37768 kDa) was determined by electrospray mass spectrometry. Its first 39 amino acids were sequenced and a motif was found between amino acids 32 and 37 that seems to exist in all the cytochromes of the c(3) type from sulfate-reducing bacteria sequenced at present. The midpoint redox potentials of this cytochrome were estimated to be -68, -120, -248 and -310 mV. Electron paramagnetic resonance spectroscopy of the oxidized cytochrome shows several low-spin components with a g(max) spreading from 3.254 to 2.983. Two crystalline forms were obtained by vapour diffusion from a solution containing 2% PEG 6000 and 0.25-0.75 M acetate buffer pH = 5.5. Both crystals belong to monoclinic space groups: one is P2(1), with a = 61.00, b = 106.19, c = 82.05 A, beta = 103.61 degrees, and the other is C2 with a = 152.17, b = 98.45, c = 89.24 A, beta = 119.18 degrees. Density measurements of the P2(1) crystals suggest that there are two independent molecules in the asymmetric unit. Self-rotation function calculations indicate, in both crystal forms, the presence of a non-crystallographic axis perpendicular to the crystallographic twofold axis. This result and the calculated values for the volume per unit molecular weight of the C2 crystals suggest the presence of two or four molecules in the asymmetric unit.

Purification and characterization of three proteins from a halophilic sulfate-reducing bacterium,<i>Desulfovibrio salexigens</i&gt, Czechowski, M., Fauque G., Galliano N., Dimon B., Moura I., Moura J. J. G., Xavier A. V., Barato B. A. S., Lino A. R., and Legall J. , Journal of Industrial Microbiology & Biotechnology, Volume 1, Number 3, p.139-147, (1986) AbstractWebsite
n/a
D
The primary structure of the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveals an unusual type of diheme cytochrome c, Devreese, B., Costa C., Demol H., Papaefthymiou V., Moura I., Moura J. J., and Van Beeumen J. , Eur J Biochem, Sep 1, Volume 248, Number 2, p.445-51, (1997) AbstractWebsite

The complete amino acid sequence of the unusual diheme split-Soret cytochrome c from the sulphate-reducing Desulfovibrio desulfuricans strain ATCC 27774 has been determined using classical chemical sequencing techniques and mass spectrometry. The 247-residue sequence shows almost no similarity with any other known diheme cytochrome c, but the heme-binding site of the protein is similar to that of the cytochromes c3 from the sulphate reducers. The cytochrome-c-like domain of the protein covers only the C-terminal part of the molecule, and there is evidence for at least one more domain containing four cysteine residues, which might bind another cofactor, possibly a non-heme iron-containing cluster. This domain is similar to a sequence fragment of the genome of Archaeoglobus fulgidus, which confirms the high conservation of the genes involved in sulfate reduction.

Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins, Devreese, B., Tavares P., Lampreia J., Van Damme N., Legall J., Moura J. J., Van Beeumen J., and Moura I. , FEBS Lett, May 6, Volume 385, Number 3, p.138-42, (1996) AbstractWebsite

The primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a redox protein with two mononuclear iron sites, was determined by automatic Edman degradation and mass spectrometry of the composing peptides. It contains 125 amino acid residues of which five are cysteines. The first four, Cys-9, Cys-12, Cys-28 and Cys-29, are responsible for the binding of Center I which has a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from D. gigas. The remaining Cys-115 is proposed to be involved in the coordination of Center II, which is probably octahedrally coordinated with predominantly nitrogen/oxygen containing ligands as previously suggested by Mossbauer and Raman spectroscopy.

F
Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium, Fauque, G., Czechowski M., Berlier Y. M., Lespinat P. A., Legall J., and Moura J. J. , Biochem Biophys Res Commun, May 15, Volume 184, Number 3, p.1256-60, (1992) AbstractWebsite

A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21. This protein appears to be 75% pure on SDS-gel electrophoresis showing two major bands of molecular mass around 55 and 15 kDa. This hydrogenase contains 0.6-0.7 nickel atom and 7-8 iron atoms per mole of enzyme and has a specific activity of 783 in the hydrogen uptake reaction, of 231 in the hydrogen production assay and of 84 in the deuterium-proton exchange reaction. The H2/HD ratio is lower than one in the D2-H+ exchange reaction. The enzyme is very sensitive to NO, relatively little inhibited by CO but unaffected by NO2-. The EPR spectrum of the native hydrogenase shows the presence of a [3Fe-4S] oxidized cluster and of a Ni(III) species.

Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands, Fauque, G., Lino A. R., Czechowski M., Kang L., Dervartanian D. V., Moura J. J., Legall J., and Moura I. , Biochim Biophys Acta, Aug 1, Volume 1040, Number 1, p.112-8, (1990) AbstractWebsite

A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).

Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800), Fauque, G., Teixeira M., Moura I., Lespinat P. A., Xavier A. V., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Moura J. G. , Eur J Biochem, Jul 2, Volume 142, Number 1, p.21-8, (1984) AbstractWebsite

A soluble hydrogenase from the methanogenic bacterium, Methanosarcina barkeri (DSM 800) has been purified to apparent electrophoretic homogeneity, with an overall 550-fold purification, a 45% yield and a final specific activity of 270 mumol H2 evolved min-1 (mg protein)-1. The hydrogenase has a high molecular mass of approximately equal to 800 kDa and subunits with molecular masses of approximately equal to 60 kDa. The enzyme is stable to heating at 65 degrees C and to exposure to air at 4 degrees C in the oxidized state for periods up to a week. The overall stability of this enzyme is compared with other hydrogenase isolated from strict anaerobic sulfate-reducing bacteria. Ms. barkeri hydrogenase shows an absorption spectrum typical of a non-heme iron protein with maxima at 275 nm, 380 nm and 405 nm. A flavin component, identified as FMN or riboflavin was extracted under acidic conditions and quantified to approximately one flavin molecule per subunit. In addition to this component, 8-10 iron atoms and 0.6-0.8 nickel atom were also detected per subunit. The electron paramagnetic resonance (EPR) spectrum of the native enzyme shows a rhombic signal with g values at 2.24, 2.20 and approximately equal to 2.0. probably due to nickel which is optimally measured at 40 K but still detectable at 77 K. In the reduced state, using dithionite or molecular hydrogen as reductants, at least two types of g = 1.94 EPR signals, due to iron-sulfur centers, could be detected and differentiated on the basis of power and temperature dependence. Center I has g values at 2.04, 1.90 and 1.86, while center II has g values at 2.08, 1.93 and 1.85. When the hydrogenase is reduced by hydrogen or dithionite the rhombic EPR species disappears and is replaced by other EPR-active species with g values at 2.33, 2.23, 2.12, 2.09, 2.04 and 2.00. These complex signals may represent different nickel species and are only observable at temperatures higher than 20 K. In the native preparation, at high temperatures (T greater than 35 K) or in partially reduced samples, a free radical due to the flavin moiety is observed. The EPR spectrum of reduced hydrogenase in 80% Me2SO presents an axial type of spectrum only detectable below 30 K.

The primary structure of the beta subunit of Desulfovibrio desulfuricans (ATCC 27774) NiFe hydrogenase, Franco, R., Calvete J. J., Thole H. H., Raida M., Moura I., and Moura J. J. G. , Protein and Peptide Letters, Apr, Volume 4, Number 2, p.131-138, (1997) AbstractWebsite

The periplasmic [NiFe] hydrogenase isolated from Desulfovibrio (D.) desulfuricans (ATCC 27774) is a heterodimer of a 28 kDa (beta) and a 60 kDa (alpha) subunit. Here we report the complete amino acid sequence of the small (beta) polypeptide chain determined by Edman degradation of proteolytic fragments. Electrospray-ionization mass spectrometry of the native protein confirmed the sequencing results. The sequence is compared with that of D. gigas [NiFe] hydrogenase whose three-dimensional structure has been recently published.

G
Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Kladova A. V., Bursakov S. A., Dias J. M., Texeira S., Shnyrov V. L., Moura J. J., Moura I., Romao M. J., and Trincao J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 64, Number Pt 7, p.593-5, (2008) AbstractWebsite

Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 A resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

Protein effects on the electronic structure of the [Fe4S4]2+ cluster in ferredoxin and HiPIP, Glaser, T., Bertini I., Moura J. J., Hedman B., Hodgson K. O., and Solomon E. I. , J Am Chem Soc, May 23, Volume 123, Number 20, p.4859-60, (2001) AbstractWebsite
n/a
Prediction of Signal Peptides and Signal Anchors of Cytocrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774 Using Bioinformatic Tools, Gonçalves, L. L., Almeida M. G., Lampreia J., Moura J. J. G., and Moura I. , Essays in Bioinformatics, Volume Vol. 368, p.203-208, (2005) Abstract

n/a

Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role, Gonzalez, P. J., Rivas M. G., Mota C. S., Brondino C. D., Moura I., and Moura J. J. G. , Coord Chem Rev, Volume 257, p.315-331, (2013)
J
Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity, Johnston, E. M., Dell'Acqua S., Pauleta S. R., Moura I., and Solomon E. I. , Chem Sci, Volume 6, p.5670-5679, (2015)
L
The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Legall, J., Ljungdahl P. O., Moura I., Peck, H. D. Jr., Xavier A. V., Moura J. J., Teixera M., Huynh B. H., and Dervartanian D. V. , Biochem Biophys Res Commun, May 31, Volume 106, Number 2, p.610-6, (1982) AbstractWebsite
n/a
Purification and preliminary characterization of tetraheme cytochrome c3 and adenylylsulfate reductase from the peptidolytic sulfate-reducing bacterium Desulfovibrio aminophilus DSM 12254, Lopez-Cortes, A., Bursakov S., Figueiredo A., Thapper A. E., Todorovic S., Moura J. J., Ollivier B., Moura I., and Fauque G. , Bioinorg Chem Appl, p.81-91, (2005) AbstractWebsite

Two proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three chromatographic steps (DEAE-Biogel A, Source 15, and Superdex 200 columns). It contains two different subunits with molecular masses of 75 and 18 kDa. The fraction after the last purification step had a purity index (A(278nm) / A(388nm)) of 5.34, which was used for further EPR spectroscopic studies. The D. aminophilus APS reductase is very similar to the homologous enzymes isolated from D. gigas and D. desulfuricans ATCC 27774. A tetraheme cytochrome c(3) (His-heme iron-His) has been purified in three chromatographic steps (DEAE- Biogel A, Source 15, and Biogel-HTP columns) and preliminarily characterized. It has a purity index ([A(553nm) - A(570nm)](red) / A(280nm)) of 2.9 and a molecular mass of around 15 kDa, and its spectroscopic characterization (NMR and EPR) has been carried out. This hemoprotein presents similarities with the tetraheme cytochrome c(3) from Desulfomicrobium (Des.) norvegicum (NMR spectra, and N-terminal amino acid sequence).

M