Publications

Export 44 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Molybdenum and tungsten enzymes: a brief overview, Cordas, C. M., and Moura J. J. G. , Coord Chem Rev, Volume 394, p.53-64, (2019)
2018
Mononuclear molybdenum-containing enzymes, Maia, L., and Moura J. J. G. , Reference Module in Chemistry, Volume Molecular Sciences and Chemical Engineering, p.1 - 19, (2018) Website
2017
Molybdenum and tungsten-containing enzymes: an overview, Maia, L. B., Moura I., and Moura J. J. G. , Molybdenum and Tungsten Enzymes: Biochemistry, RSC Metallobiology Series No. 5 (ISBN: 978-1-78262-089-1). , p.1-80, (2017) mo_w_enzymes-rsc_book_biochemistry-chap_1.pdf
2015
Molybdenum and tungsten enzymes: from biology to chemistry and back, Moura, J. J. G., Bernhardt P. V., Maia L. B., and Gonzalez P. J. , J Biol Inorg Chem, Volume 20, p.181-182, (2015)
Molybdenum and tungsten-dependent formate dehydrogenases, Maia, L. B., Moura J. J. G., and Moura I. , J Biol Inorg Chem, Volume 20, p.287-309, (2015)
2014
Mo-Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas, Carepo, M. S., Pauleta S. R., Wedd A. G., Moura J. J. G., and Moura I. , J Biol Inorg Chem, Volume 19, p.605-614, (2014)
2013
Marinobacter hydrocarbonoclasticus is an aerobic denitrifier, Pauleta, S. R., Ramos S., Pietsch M., Carreira C., Dell'Acqua S., and Moura I. , EuroBIC 11, Granada, p.49-53, (2013)
2012
Multifrequency EPR Study of Fe(3+) and Co(2+) in the Active Site of Desulforedoxin, Mathies, G., Almeida R. M., Gast P., Moura J. J., and Groenen E. J. , J Phys Chem B, Volume 116, Issue 24, p.7122-7128, (2012)
2011
The mechanism of formate oxidation by metal-dependent formate dehydrogenases, Mota, C. S., Rivas M. G., Brondino C. D., Moura I., Moura J. J., Gonzalez P. J., and Cerqueira N. M. , J Biol Inorg Chem, Dec, Volume 16, Number 8, p.1255-68, (2011) AbstractWebsite

Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C-H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.

2010
Metallothioneins and trace elements in digestive gland, gills, kidney and gonads of Octopus vulgaris, Raimundo, J., Costa P. M., Vale C., Costa M. H., and Moura I. , Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, Aug, Volume 152, Number 2, p.139-146, (2010) AbstractWebsite

Metallothionein-like proteins (MT) and V, Cr, Co, Ni, Zn, Cu, As and Cd were determined in digestive gland, gills, kidney and gonads of Octopus vulgaris, from the Portuguese coast. To our knowledge these are the first data on MT in octopus. High concentrations (mu g g(-1), dry mass) of Zn (48050) and Cd (555) were found in digestive gland, and MT reached levels one order of magnitude above the ones registered in wild bivalves. Significantly higher levels of MT in digestive gland and gills of specimens from A and B were in line with elevated Cd concentrations. Principal component analyses (PCA) point to MT-Cd and MT-Cr associations in digestive gland and gills. Despite the high levels of Zn in specimens from B, association with Zn was not obtained. Due to the affinity of MT to various elements, it should not be excluded the possibility of Cd replacing Zn in Zn-MT. Kidney presented higher levels of Cd, Co, Ni and As than gills and gonads, and in the case of As surpassing the levels in digestive gland, but PCA showed no relation with MT. Likewise the MT levels in gonads had no correspondence to the metal concentration variation. (C) 2010 Elsevier Inc. All rights reserved.

Measuring the cytochrome c nitrite reductase activity-practical considerations on the enzyme assays, Silveira, C. M., Besson S., Moura I., Moura J. J., and Almeida M. G. , Bioinorg Chem Appl, (2010) AbstractWebsite

The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a systematic manner using two different spectrophotometric assays carried out in the presence of different redox mediators and a direct electrochemical approach. Solution assays have proved that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers and ammonium is always the main product of nitrite reduction. The catalytic parameters were discussed on the basis of the mediator reducing power and also taking into account the location of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst turnover increases with the reductive driving force.

2009
Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis, Rivas, M. G., Carepo M. S., Mota C. S., Korbas M., Durand M. C., Lopes A. T., Brondino C. D., Pereira A. S., George G. N., Dolla A., Moura J. J., and Moura I. , Biochemistry, Feb 10, Volume 48, Number 5, p.873-82, (2009) AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmental conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 microM molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2008
Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments, Costa, P. M., Repolho T., Caeiro S., Diniz M. E., Moura I., and Costa M. H. , Ecotoxicology and Environmental Safety, Sep, Volume 71, Number 1, p.117-124, (2008) AbstractWebsite

Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (U), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate NIT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches. (C) 2007 Elsevier Inc. All rights reserved.

2007
Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P. pantotrophus pseudoazurin: kinetics of intermolecular electron transfer, de Sousa, P. M., Pauleta S. R., Goncalves M. L., Pettigrew G. W., Moura I., Dos Santos M. M., and Moura J. J. , J Biol Inorg Chem, Jun, Volume 12, Number 5, p.691-8, (2007) AbstractWebsite

This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.

2006
Modelling the electron-transfer complex between aldehyde oxidoreductase and flavodoxin, Krippahl, Ludwig, Palma Nuno P., Moura Isabel, and Moura Jose J. G. , European Journal of Inorganic Chemistry, Oct 2, Number 19, p.3835-3840, (2006) AbstractWebsite

Three-dimensional protein structures of the xanthine oxidase family show different solutions for the problem of transferring electrons between the flavin adenine dinucleotide (FAD) group and the molybdenum cofactor. In xanthine oxidase all the cofactors he within domains of the same protein chain, whereas in CO dehydrogenase the Fe-S centres, FAD and Mo cofactors are enclosed in separate chains and the enzyme exists as a stable complex of all three. In aldehyde oxidore-ductase, only Fe-S and Mo co-factors are present in a single protein chain. Flavodoxin is docked to aldehyde oxidoreductase to mimic the flavin component on the intramolecular electron transfer chain of aanthine oxidase and CO dehydrogenase and, remarkably, the main features of the electron-transfer pathway are observed.

Metalloenzymes of the denitrification pathway, Tavares, P., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, Dec, Volume 100, Number 12, p.2087-100, (2006) AbstractWebsite

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification.

Molybdenum and tungsten enzymes: the xanthine oxidase family, Brondino, C. D., Romao M. J., Moura I., and Moura J. J. , Curr Opin Chem Biol, Apr, Volume 10, Number 2, p.109-14, (2006) AbstractWebsite

Mononuclear molybdenum and tungsten are found in the active site of a diverse group of enzymes that, in general, catalyze oxygen atom transfer reactions. Enzymes of the xanthine oxidase family are the best-characterized mononuclear Mo-containing enzymes. Several 3D structures of diverse members of this family are known. Recently, the structures of substrate-bound and arsenite-inhibited forms of two members of this family have also been reported. In addition, spectroscopic studies have been utilized to elucidate fine details that complement the structural information. Altogether, these studies have provided an important amount of information on the characteristics of the active site and the electron transfer pathways.

2005
The methylenetetrahydrofolate reductase (MTHFR) 677C-->T mutation and cardiovascular risk--A case of ischemic stroke and acute myocardial infarction, Melo, M., Gaspar E., Madeira S., de Moura P., Alexandrino B., and de Moura J. J. , Rev Port Cardiol, Jan, Volume 24, Number 1, p.89-99, (2005) AbstractWebsite

The authors report the case of a 39-year-old male patient who had an ischemic stroke (complete infarction of right anterior cerebral circulation) and an acute myocardial infarction during the same year. Molecular study revealed he was homozygous for the 677C-->T mutation in the gene coding for methylenetetrahydrofolate reductase, a key enzyme of folate metabolism; deficiency of this enzyme is associated with increased cardiovascular risk and neurological lesions. Some considerations are put forward about hyperhomocysteinemia and the MTHFR 677C-->T mutation as cardiovascular risk factors.

2004
Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases, Moura, J. J., Brondino C. D., Trincao J., and Romao M. J. , J Biol Inorg Chem, Oct, Volume 9, Number 7, p.791-9, (2004) AbstractWebsite

Molybdenum and tungsten are second- and third-row transition elements, respectively, which are found in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen atom transfer reactions. Mononuclear Mo-containing enzymes have been classified into three families: xanthine oxidase, DMSO reductase, and sulfite oxidase. The proteins of the DMSO reductase family present the widest diversity of properties among its members and our knowledge about this family was greatly broadened by the study of the enzymes nitrate reductase and formate dehydrogenase, obtained from different sources. We discuss in this review the information of the better characterized examples of these two types of Mo enzymes and W enzymes closely related to the members of the DMSO reductase family. We briefly summarize, also, the few cases reported so far for enzymes that can function either with Mo or W at their active site.

2003
Molecular aspects of denitrification/nitrate dissimilation, Moura, I., Cabrito I., Almeida G., Cunha C., Romao M. J., and Moura J. J. G. , Journal of Inorganic Biochemistry, Jul 15, Volume 96, Number 1, p.195-195, (2003) AbstractWebsite
n/a
Modeling protein complexes with BiGGER, Krippahl, L., Moura J. J., and Palma P. N. , Proteins, Jul 1, Volume 52, Number 1, p.19-23, (2003) AbstractWebsite

This article describes the method and results of our participation in the Critical Assessment of PRediction of Interactions (CAPRI) experiment, using the protein docking program BiGGER (Bimolecular complex Generation with Global Evaluation and Ranking) (Palma et al., Proteins 2000;39:372-384). Of five target complexes (CAPRI targets 2, 4, 5, 6, and 7), only one was successfully predicted (target 6), but BiGGER generated reasonable models for targets 4, 5, and 7, which could have been identified if additional biochemical information had been available.

2002
Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes, Sola, S., Brito M. A., Brites D., Moura J. J. G., and Rodrigues C. M. P. , Clinical Science, Nov, Volume 103, Number 5, p.475-485, (2002) AbstractWebsite

The accumulation of toxic bile salts within the hepatocyte plays a key role in organ injury during liver disease. Deoxycholate (DC) and glycochenodeoxycholate (GCDC) induce apoptosis in vitro and in vivo, perhaps through direct perturbation of mitochondrial membrane structure and function. In contrast, ursodeoxycholate (UDC) and its taurine-conjugated form (TUDC) appear to be protective. We show here that hydrophobic bile salts induced apoptosis in cultured rat hepatocytes, without modulating the expression of pro-apoptotic Bax protein, and caused cytochrome c release in isolated mitochondria. Co-incubation with UDC and TUDC prevented cell death and efflux of mitochondrial factors. Using spin-labelling techniques and EPR spectroscopy analysis of isolated rat liver mitochondria, we found significant structural changes at the membrane-water surface in mitochondria exposed to hydrophobic bile salts, including modified lipid polarity and fluidity, altered protein order and increased oxidative injury. UDC, TUDC and cyclosporin A almost completely abrogated DC- and GCDC-induced membrane perturbations. We conclude that the toxicity of hydrophobic bile salts to hepatocytes is mediated by cytochrome c release, through a mechanism associated with marked direct effects on mitochondrial membrane lipid polarity and fluidity, protein order and redox status, without modulation of pro-apoptotic Bax expression. UDC and TUDC can directly suppress disruption of mitochondrial membrane structure, which may represent an important mechanism of hepatoprotection by these bile salts.

Molybdenum enzymes in reactions involving aldehydes and acids, Romao, M. J., Cunha C. A., Brondino C. D., and Moura J. J. , Met Ions Biol Syst, Volume 39, p.539-70, (2002) AbstractWebsite
n/a