Publications

Export 65 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B. H., Moura I., Lino A. R., Moura J. J. G., and Legall J. , Hyperfine Interactions, 1988, Volume 42, Number 1-4, p.905-908, (1988) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B., Moura I., Lino A., Moura J., and Legall J. , Hyperfine Interactions, Volume 42, Number 1, p.905-908, (1988) AbstractWebsite

Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas . For each molecule of desulforubidin, there are two sirohemes and four [4Fe−4S] clusters. The [4Fe−4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe−4S] 2+ cluster. Such an exchange-coupled siroheme-[4Fe−4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli /1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris /2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe−4S] 2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

J
Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni, de Jong, G. A., Caldeira J., Sun J., Jongejan J. A., de Vries S., Loehr T. M., Moura I., Moura J. J., and Duine J. A. , Biochemistry, Jul 25, Volume 34, Number 29, p.9451-8, (1995) AbstractWebsite

Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

K
Conversion of [3 Fe-3 S] into [4 Fe-4 S] clusters in a Desulfovibrio gigas ferredoxin and isotopic labeling of iron—sulfur cluster subsites, Kent, T. A., Moura I., Moura J. J. G., Lipscomb J. D., Huynh B. H., Legall J., Xavier A. V., and Münck E. , Febs Letters, Volume 138, Number 1, p.55-58, (1982) AbstractWebsite
n/a
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009) AbstractWebsite

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

L
Carbon dioxide utilisation - the formate route, L.B., Maia, I. Moura, and J.J.G. Moura , Enzymes for Solving Humankind's Problems, Moura J.J.G., Moura I., Maia L.B. (eds), p.29-81, (2021) co2_utilisation-formate_formation-2021.pdf
Cobalt containing B12 cofactors from methanogenic bacteria - spectroscopic characterization, Lino, A. R., Xavier A. V., Moura I., Legall J., and Ljungdahl P. O. , Rev Portuguesa de Química, Volume 27, p.175-177, (1985) Abstract
n/a
Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774, Liu, M. C., Costa C., Coutinho I. B., Moura J. J., Moura I., Xavier A. V., and Legall J. , J Bacteriol, Dec, Volume 170, Number 12, p.5545-51, (1988) AbstractWebsite

Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells.

M
Characterization of a 7Fe ferredoxin isolated from the marine denitrifier Pseudomonas nautica strain 617: spectroscopic and electrochemical studies, Macedo, A. L., Besson S., Moreno C., Fauque G., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Dec 13, Volume 229, Number 2, p.524-30, (1996) AbstractWebsite

A 7Fe ferredoxin, isolated from the marine denitrifier Pseudomonas nautica strain 617, was characterized. The NH2-terminal sequence analysis, performed until residue number 56, shows a high similarity with the 7Fe ferredoxins isolated from Azotobacter vinelandii, Pseudomonas putida, and Pseudomonas stutzeri. EPR and NMR spectroscopies identify the presence of both [3Fe-4S] and [4Fe-4S] clusters, with cysteinyl coordination. The electrochemical studies on [Fe-S] clusters show that a fast diffusion-dominated electron transfer, promoted by Mg(II), takes place between the ferredoxin and the glassy carbon electrode. Square wave voltammetry studies gave access to the electrosynthesis of a 4Fe center formed within the [3Fe-4S] core. The [3Fe-4S] cluster exhibited two reduction potentials at -175 and -680 +/- 10 mV and the [4Fe-4S] cluster was characterized by an unusually low reduction potential of -715 +/- 10 mV, at pH 7.6

Conversion of adrenaline to indolic derivatives by the human erythrocyte plasma membrane, Marques, F., Duarte R. O., Moura J. J., and Bicho M. P. , Biol Signals, Sep-Oct, Volume 5, Number 5, p.275-82, (1996) AbstractWebsite

The conversion of adrenaline to aminochromes by the human erythrocyte plasma membranes at pH 9.5 was shown to be a complex reaction that proceeded at least by two distinct phases. The first one, corresponding to the formation of adrenochrome, is catalyzed in the presence of the membranes, suggesting the involvement of an enzyme-mediated process. Active oxygen species were identified as intermediates during this phase. Oxygen radical scavengers (catalase and superoxide dismutase) suggested H2O2 and O2- involvement. Adrenochrome formation was stimulated by NADH indicating the participation of another enzyme (NADH dehydrogenase) which is known to be present in the human erythrocyte plasma membrane. The second phase, corresponding to the disappearance of adrenochrome, is also stimulated by NADH and inhibited in the presence of the membranes. In this reaction, adrenochrome is converted to aminochromes via adrenochrome semiquinone. The formation of radical species is demonstrated by EPR spectroscopy. The results led to the proposal of a mechanism for the formation of adrenochrome and other oxidation products from adrenaline.

Continuous-wave EPR at 275GHz: application to high-spin Fe(3+) systems, Mathies, G., Blok H., Disselhorst J. A., Gast P., van der Meer H., Miedema D. M., Almeida R. M., Moura J. J., Hagen W. R., and Groenen E. J. , J Magn Reson, May, Volume 210, Number 1, p.126-32, (2011) AbstractWebsite

The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.

Comparative electrochemical behavior of cytochrome c on aqueous solutions containing choline-based room temperature ionic liquids, Matias, S. C., Lourenço N. M. T., Fonseca J. P., and Cordas C. M. , ChemistrySelect, Volume 2, p.8701–8705, (2017) Website
Construction of effective disposable biosensors for point-of-care testing of nitrite, Monteiro, T., Rodrigues P. R., Gonçalves A. L., Moura J. J. G., Anorga L., Jubete E., Piknova B., Schechter A. N., Silveira C. M., and Almeida M. G. , Talanta, Volume 142, p.246-251, (2015)
Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau, Moura, I., Fauque G., Legall J., Xavier A. V., and Moura J. J. , Eur J Biochem, Feb 2, Volume 162, Number 3, p.547-54, (1987) AbstractWebsite

Two c-type cytochromes were purified and characterized by electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopic techniques, from the sulfate-reducer nitrogen-fixing organism, Desulfovibrio desulfuricans strain Berre-Eau (NCIB 8387). The purification procedures included several chromatographic steps on alumina, carboxymethylcellulose and gel filtration. A tetrahaem and a monohaem cytochrome were identified. The multihaem cytochrome has visible, EPR and NMR spectra with general properties similar to other low-potential bis-histidinyl axially bound haem proteins, belonging to the class of tetrahaem cytochrome c3 isolated from other Desulfovibrio species. The monohaem cytochrome c553 is ascorbate-reducible and its EPR and NMR data are characteristic of a cytochrome with methionine-histidine ligation. Their properties are compared with other homologous proteins isolated from sulfate-reducing bacteria.

A cobalt containing protein isolated from Desulfovibrio gigas, a sulfate reducer, Moura, J. J., Moura I., Bruschi M., Legall J., and Xavier A. V. , Biochem Biophys Res Commun, Feb 12, Volume 92, Number 3, p.962-70, (1980) AbstractWebsite
n/a
Chromosome aberrations in cattle raised on bracken fern pasture, Moura, J. W., Stocco dos Santos R. C., Dagli M. L., D'Angelino J. L., Birgel E. H., and Becak W. , Experientia, Sep 15, Volume 44, Number 9, p.785-8, (1988) AbstractWebsite

Thirteen cows maintained on natural bracken fern (Pteridium aquilinum) were analyzed cytogenetically. The frequency of structural chromosome aberrations detected in peripheral blood cells was significantly higher when compared to that detected in animals raised on pasture containing no bracken fern. We discuss the clastogenic action of fern and its synergistic action with infection by type 2 and 4 papilloma virus in the same animals.

A comparative spectroscopic study of two non-haem iron proteins lacking labile sulphide from Desulphovibrio gigas, Moura, I., Xavier A. V., Cammack R., Bruschi M., and Legall J. , Biochimica et Biophysica Acta (BBA) - Protein Structure, Volume 533, Number 1, p.156-162, (1978) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Moessbauer and EPR studies, Moura, I., Legall J., Lino A. R., Peck H. D., Fauque G., Xavier A. V., Dervartanian D. V., Moura J. J. G., and Huynh B. H. , Journal of the American Chemical Society, 1988/02/17, Volume 110, Number 4, p.1075-1082, (1988) AbstractWebsite
n/a
Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria, Mukhopadhyay, A., Kladova A. V., Bursakov S. A., Gavel O. Y., Calvete J. J., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., and Trincao J. , J Biol Inorg Chem, Jan, Volume 16, Number 1, p.51-61, (2011) AbstractWebsite

Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 A, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.

N
Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess, Nair, R. R., Silveira C. M., Diniz M. S., Almeida M. G., Moura J. J. G., and Rivas M. G. , J Biol Inorg Chem, Volume 20, p.311–322, (2015)
Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas, Najmudin, S., Bonifacio C., Duarte A. G., Pauleta S. R., Moura I., Moura J. J., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 65, Number Pt 7, p.730-2, (2009) AbstractWebsite

The orange-coloured protein (ORP) from Desulfovibrio gigas is a 12 kDa protein that contains a novel mixed-metal sulfide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)]. Diffracting crystals of the apo form of ORP have been obtained. Data have been collected for the apo form of ORP to 2.25 A resolution in-house and to beyond 2.0 A resolution at ESRF, Grenoble. The crystals belonged to a trigonal space group, with unit-cell parameters a = 43, b = 43, c = 106 A.

P
Calcium-dependent conformation of a heme and fingerprint peptide of the diheme cytochrome c peroxidase from Paracoccus pantotrophus, Pauleta, S. R., Lu Y., Goodhew C. F., Moura I., Pettigrew G. W., and Shelnutt J. A. , Biochemistry, Jun 5, Volume 40, Number 22, p.6570-6579, (2001) AbstractWebsite

The structural changes in the heme macrocycle and substituents caused by binding of Ca2+ to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca2+-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca2+ or Mg2+. This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca2+ binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca2+ binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.

A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase, Pauleta, S. R., Cooper A., Nutley M., Errington N., Harding S., Guerlesquin F., Goodhew C. F., Moura I., Moura J. J., and Pettigrew G. W. , Biochemistry, Nov 23, Volume 43, Number 46, p.14566-76, (2004) AbstractWebsite

Pseudoazurin binds at a single site on cytochrome c peroxidase from Paracoccus pantotrophus with a K(d) of 16.4 microM at 25 degrees C, pH 6.0, in an endothermic reaction that is driven by a large entropy change. Sedimentation velocity experiments confirmed the presence of a single site, although results at higher pseudoazurin concentrations are complicated by the dimerization of the protein. Microcalorimetry, ultracentrifugation, and (1)H NMR spectroscopy studies in which cytochrome c550, pseudoazurin, and cytochrome c peroxidase were all present could be modeled using a competitive binding algorithm. Molecular docking simulation of the binding of pseudoazurin to the peroxidase in combination with the chemical shift perturbation pattern for pseudoazurin in the presence of the peroxidase revealed a group of solutions that were situated close to the electron-transferring heme with Cu-Fe distances of about 14 A. This is consistent with the results of (1)H NMR spectroscopy, which showed that pseudoazurin binds closely enough to the electron-transferring heme of the peroxidase to perturb its set of heme methyl resonances. We conclude that cytochrome c550 and pseudoazurin bind at the same site on the cytochrome c peroxidase and that the pair of electrons required to restore the enzyme to its active state after turnover are delivered one-by-one to the electron-transferring heme.

Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. , Biochem Biophys Res Commun, Apr 16, Volume 221, Number 2, p.414-21, (1996) AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

Copper-containing nitrite reductase from Pseudomonas chlororaphis DSM 50135 - Evidence for modulation of the rate of intramolecular electron transfer through nitrite binding to the type 2 copper center, Pinho, D., Besson S., Brondino C. D., de Castro B., and Moura I. , European Journal of Biochemistry, Jun, Volume 271, Number 12, p.2361-2369, (2004) AbstractWebsite

The nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO2-. Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme.