Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

Citation:
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009)

Abstract:

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

Notes:

1744-3091 (Electronic)1744-3091 (Linking)Journal ArticleResearch Support, Non-U.S. Gov't

Related External Link