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Abstract

The relentless rise of atmospheric CO2 is causing large and unpredictable
impacts on the Earth climate, due to the CO2 significant greenhouse effect,
besides being responsible for the ocean acidification, with consequent huge
impacts in our daily lives and in all forms of life. To stop spiral of destruction,
we must actively reduce the CO2 emissions and develop new and more efficient
“CO2 sinks”. We should be focused on the opportunities provided by exploiting
this novel and huge carbon feedstock to produce de novo fuels and added-value
compounds. The conversion of CO2 into formate offers key advantages for
carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre
of intense research, due to the “green” advantages the bioconversion can offer,
namely substrate and product selectivity and specificity, in reactions run at
ambient temperature and pressure and neutral pH. In this chapter, we describe
the remarkable recent progress towards efficient and selective FDH-catalysed
CO2 reduction to formate. We focus on the enzymes, discussing their structure
and mechanism of action. Selected promising studies and successful proof of
concepts of FDH-dependent CO2 reduction to formate and beyond are discussed,
to highlight the power of FDHs and the challenges this CO2 bioconversion still
faces.
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Abbreviations

CCS Carbon dioxide capture and sequestration
Cys-Mo-FDH Cysteine, molybdenum-containing formate dehydrogenase
Cys-W-FDH Cysteine, tungsten-containing formate dehydrogenase
EPR Electron paramagnetic resonance spectroscopic
Fe/Fe-Hase Iron–iron hydrogenase
Fe/S Iron–sulfur centres
FDH Formate dehydrogenase
FMFDH N-formyl-methanofuran dehydrogenase
GDE Gas diffusion electrode
Mo-FDH Molybdenum-containing formate dehydrogenase
Ni/Fe-Hase Nickel/iron-containing hydrogenase
RES Renewable energy sources
SeCys-Mo-FDH Selenocysteine, molybdenum-containing formate

dehydrogenase
SeCys-W-FDH Selenocysteine, tungsten-containing formate dehydrogenase
XAS X-ray absorption spectroscopy
VC Added-value compounds or valuable compounds
W-FDH Tungsten-containing formate dehydrogenase

1 The Relentless Rise of Carbon Dioxide

In 2018 alone, more than 36Gt of CO2 [1] were dumped into the atmosphere as
waste material from fossil resources-based energy and chemical industries! In that
year, the global atmospheric CO2 concentration reached an annual average value of
407 ppm, an increase of 150% since pre-industrial times (277 ppm in 1750)
(Fig. 1) [1]. Yet, new records are being set, and a monthly average of 416 ppm was
already observed this March 2020 [2]. This ever-increasing atmospheric CO2

concentration is causing large and unpredictable impacts on the Earth climate, due
to the CO2 significant greenhouse effect, besides being responsible for the ocean
acidification, with consequent huge impacts in our daily lives and in all forms of
life.

Atmospheric CO2 concentration results from the balance between CO2 emission
and uptake [3]. CO2 is emitted from human activities, such as fossil fuel com-
bustion and oxidation from other energy and industrial processes (10.0Gt of carbon
in 2018 [1]) and deliberate activities on land, mainly deforestation (1.5Gt of carbon
in 2018 [1]), as well as, from natural processes, such as volcanic eruptions and
biological emissions. On the other plate of the scale, the small “CO2 sinks” are
mainly provided by physical and biological processes in oceans (2.6Gt of carbon in
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2018 [1]) and land (3.5Gt of carbon in 2018 [1]). To break this largely unfavourable
imbalance (more than 5Gt in 2018), we must actively reduce the CO2 emissions and
develop new and more efficient “CO2 sinks”—new individual actions and political
decisions are needed, as reviewed by Seixas and Ferreira in this book [3].

Until recently, the debate often focused only on “passive CO2 mitigation”,
searching for strategies for CO2 capture and sequestration (CCS). Instead, we
should be looking at the opportunities for the energy and chemical industries
provided by exploiting this novel and huge carbon feedstock (Fig. 2), such as
(a) storage of “intermittent” renewable energy sources (RES) (wind, solar and
hydropower energy, which are now rapidly growing and becoming economically
viable), (b) conversion of RES-derived electricity into fuels (mainly for mobility
and transport sector, in particular aviation and heavy freight over long distances, the
major polluters), (c) production of added-value compounds (VC) and feedstock
chemicals for making all the modern-world chemical commodities (from bulk
chemicals to plastics, fertilisers and even pharmaceuticals). Regarding atmospheric
CO2 reduction, points (a) and (b) (energy industry) are of major relevance, as the
different scales of energy and chemical industries impede the VC production to
function as a quantitative “sink” for the massive fossil fuels-dependent CO2

emissions. Together, these three axes, storage/conversion/production, will certainly
provide a straightforward way to actively reduce the CO2 emissions, while actively
consuming the CO2 already released—”two-in-one solution”.

But, how to direct CO2 into the storage/conversion/production axes? Formic
acid/formate1 offers key advantages (Fig. 2)!

Fig. 1 Relentless rise of carbon dioxide. Global atmospheric CO2 concentrations in parts per
million (ppm) for the past 800,000 years. The peaks and valleys track ice ages (low CO2) and
warmer interglacials (higher CO2). During these cycles, CO2 was never higher than 300 ppm. In
2018, it reached 407.4 ppm. On the geologic time scale, the increase (blue dashed line) looks
virtually instantaneous Source NOAA Climate.gov, based on EPICA Dome C data provided by
NOAA NCEI Paleoclimatology Program (https://www.climate.gov/news-features/understanding-
climate/climate-change-atmospheric-carbon-dioxide)

1pKa1 (formic acid (methanoic acid, HCOOH)/formate) = 3.77.
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2 Formic Acid—The Stepping Stone Towards Carbon
Dioxide Utilisation

Formic acid was identified in fifteenth century as an acidic vapour in ant hills, from
where its name derivates—”formica”, the Latin word for ant. It was first synthesised
only in the nineteenth century from hydrocyanic acid by the famous French chemist
and physicist Joseph Gay-Lussac and also from carbon monoxide by another
French chemist, Marcellin Berthelot. However, formic acid received little industrial
attention until the last quarter of twentieth century, when it started to be used as a
preservative and antibacterial in livestock feed due to its low toxicity (LD50 of
1.8 g/kg). More recently, formic acid regained a new interest, due to some features
that are key to the longed-for “post-fossil era” (Fig. 2).

(a) Formic acid is a stable product that can be formed by the “simple” two-electron
reduction of CO2 (Eq. 1), what, noteworthy, resulted in a considerable attention
to the electrochemical CO2 reduction in the last decade (see Sect. 3.).

(b) Besides formic acid, also carbon monoxide is a stable product of the
two-electron CO2 reduction (Eq. 2). However, its high toxicity, low solubility
and low mass transfer rate make the carbon monoxide subsequent utilisation
challenging. In contrast, formic acid is a highly soluble and stable liquid, easy
to store and transport.

(c) Formic acid is also not explosive, what represents an important advantage
relatively to dihydrogen, an ideal “clean” fuel (see below).

(d) Formic acid is already used as a “building block” in chemical industry.
(e) Formic acid can be a substrate for further reduction to a carbon-based fuel,

methanol and methane, what might not be the most obvious option regarding
CO2 consumption.

(f) Formic acid, formed from CO2 and dihydrogen (Eq. 3), can be used as a
“storage form” of dihydrogen, an ideal “clean” fuel (potentially zero contri-
bution to the global carbon cycle, with a high gravimetric energy density) [4–
13]. Although formic acid is not a perfect dihydrogen “storage medium”, due to
its relatively small hydrogen content (4.4%(m/m) or 5.3%(m/v)), it is currently
still one of the best options to circumvent the technical difficulties associated
with dihydrogen handling, storage and transport. For this purpose, formic acid
produced by CO2 hydrogenation or any other approach is converted back to
dihydrogen when needed.

(g) Moreover, formic acid fuel cells are being the centre of a renewed interest [14–18].
(h) From a biotechnological point of view, formate can be both produced and

assimilated by many natural and biotechnologically engineered organisms and,
unlike dihydrogen (that is “just” oxidised to form reducing power), act as a
carbon source for “formatotrophic” organisms, thus, enabling considerably
higher biomass formation and VC and fuels production yields [19].
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CO2 þ 2e� þ 2Hþ � HCOOH ð1Þ

CO2 þ 2e� þ 2Hþ � COþH2O ð2Þ

CO2 þ H2 � HCOOH ð3Þ

ð4Þ

3 How to Convert Carbon Dioxide to Formic
Acid/Formate?—The Chemical Way

CO2 is a kinetically and thermodynamically stable molecule, with a high negative
value of the reduction potential of the CO2/HCOOH pair (highly pH dependent),
what makes its activation and reduction a difficult task [8]. Hence, perhaps the first
answer that comes to mind to reduce CO2 to formate is: electrochemically [20–33].
However, the feasibility—meaning essentially the economic viability—of this
process, that is currently the centre of intense research, depends on the Faradaic
efficiency and energetic efficiency of CO2 reduction (avoiding high electrochemical
overpotentials) and on the rate and selectivity (purity) of formate production. The
other “cost” to be considered is obviously the environmental one, and this depends
on the use of a RES-derived electricity and on the sustainability of the electrodes
(composition and durability).

The second answer is probably going to be photoreduction, which is the most
straightforward way to use a RES to convert CO2. Solar energy (photogenerated
electrons) can be used to drive chemical reactions, and this solar-to-chemical energy
conversion followed by storage in the form of chemical bonds is generally called
“artificial photosynthesis” (as it is a mimic of photosynthetic process used by living
organism to fix CO2). The progress in this field has been quite remarkable, and
several highly efficient and promising systems have been developed for CO2

reduction (as well as water oxidation and hydrogen evolution), and formic acid can
be produced with high rates and selectivity [34–44]. However, some problems have
yet to be solved. In a very simplified way, artificial photosynthesis needs two
fundamental components: an ideal light absorber/photosensitiser (for light harvest,
charge separation and charge transfer) and an ideal catalyst (with high intrinsic
activity and stability and low overpotential). Therefore, the heterogenisation of the
molecular catalysts and engineering of applicable devices are the main challenges
towards the development of effective artificial photosynthesis devices (practical
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problems, such as density and exposure of the catalyst active sites, conductivity,
mass transport and stability of the catalyst-derived material or electrode, all make
the catalyst intrinsic activity and efficiency quite different from the device perfor-
mance numbers). In addition, scale-up feasibility and whole device long-term sta-
bility (also associated with the costs of using expensive high-purity semiconductors
to achieve high efficiency) have to be attained. Nevertheless, artificial photosyn-
thesis devices might become economically viable sooner than many anticipate:
considering the energy consumption forecasted for 2050, the future solar energy
devices only need a � 10% solar-to-fuel efficiency (already achievable in proof of
concept devices!) if 1% of the Earth’s surface is covered [44].

Formic acid can also be produced chemically from CO2 and dihydrogen. This
CO2 hydrogenation is just the thermal overall CO2 reduction by dihydrogen using
molecular catalysts (Eq. 3), as an alternative to direct electrochemical or photo-
electrochemical reduction of CO2 [5, 10, 12, 13, 45–71]. Hence, here, it is the
rational design of the catalytic systems (efficiency and selectivity) that must be
attained and the systems that have been developed to date exhibit selectivity and
yield lower than desirable, besides requiring a high temperature and/or high pres-
sure. Dihydrogen is a “clean” fuel (potentially zero contribution to the global carbon
cycle), but its real environmental impact depends on how it is produce. The industrial
production of dihydrogen (primarily from methane) requires harsh temperatures and
emits as much CO2 into the atmosphere as natural gas burning [72]. To be envi-
ronmentally friendly, dihydrogen must be produced by electrolysis of water using a
RES and selected heterogeneous or homogeneous catalysts or biological systems
[73–93]. As noted above, besides producing formic acid itself, CO2 hydrogenation is
thought as a relevant way to storage dihydrogen. Therefore, also the reversible
interconversion of formic acid to CO2 and dihydrogen must be carefully considered.

4 How to Convert Carbon Dioxide to Formic
Acid/Formate?—Exploiting the Power of Formate
Dehydrogenases (Enzymes for Solving Humankind’s
Problems)

4.1 The Biochemical Way

In contrast to purely physicochemical, biological processes are substrate and
product-specific (life requires a well-defined metabolism) and occur under truly
“green”, sustainable conditions, at ambient temperature and pressure and close to
neutral pH. Biological catalysts—enzymes—offer selectivity and specificity, cou-
pled with high specific activity (in terms of active sites) and maximal rate (under the
respective cellular context). Enzymes have evolved to become perfect catalysts2,

2It should be kept in mind that enzymes did not evolve to maximise “our” VC production.
Enzymes and all cellular components evolved to achieve sustained life. The statement of “perfect
catalysts” must be taken within the respective context.
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comprising (a) specific surface patches to establish contact with specific biomole-
cules (for cell localisation, integration into metabolic complexes, crosstalk or simple
electron transfer), (b) channels where only (or mainly) the correct substrates come
in and well-determined products come out, as well as, (c) highly defined active
sites, assembled to promote the formation of key transition states and intermediates
and, thus, lower the reaction energy barriers and energy loss. For that, active sites
are built with precise steric features, electrostatic and hydrogen bonding interac-
tions, fine-tuned reduction potentials and pKa values and optimised (and often
synchronised) electron and proton transfer paths. The power and efficiency of
biological catalysis is such that enzymes cascades are the cornerstone of all
metabolic pathways that sustain life on Earth. Hence, there is a growing interest in
making use of all the advantages the “biochemical way” can provide. Numerous
hybrid systems have been (are being) designed to merge the best of the two worlds
—chemical and biochemical—and the CO2 reduction to formate is no exception.

4.2 Formate Dehydrogenases—Enzymatic Machineries

To interconvert CO2 and formate, living organisms use formate dehydrogenase
(FDH) enzymes. FDHs are a heterogeneous and broadly distributed group of
enzymes that catalyse the reversible two-electron interconversion of formate and
CO2 (Eq. 1) [94–101]. These enzymes evolved to take part in diverse metabolic
pathways, being used by some prokaryotic organism to fix (reduce) CO2 into
formate, while other prokaryotes use FDHs to derive energy, by coupling the
formate oxidation (which has a very low reduction potential value, Eº′(CO2/
HCOO−) = −0.43 V) to the reduction of several terminal electron acceptors; FDHs
are also broadly used by both prokaryotes and eukaryotes in C1 metabolism.

FDHs can be divided into two major classes, based on their cofactor content and
the consequent chemical strategy used to carry out the formate/CO2 interconversion.
One class comprises FDHs that have no metal ions or other redox-active centres—the
metal-independent FDHs class [102–109]. These enzymes are widespread, being
found in bacteria, yeasts, fungi and plants, are all (as far as is known)
NAD-dependent and belong to the D-specific dehydrogenases of 2-oxyacids family.
The other class—the metal-dependent FDHs class 3—comprises only prokaryotic
enzymes that hold different redox-active centres (Table 1) and whose active site
harbours one molybdenum or one tungsten centre (molybdenum-containing FDH
(Mo-FDH) or tungsten-containing FDH (W-FDH), respectively) [94–101, 110–112].

3It should be noted that the difference between the two FDHs classes is the absence or presence of
redox-active centres. All (so far known) metal-independent FDHs are NAD(P)-dependent. In
contrast, there are some metal-dependent FDHs that use NAD(P)+/NAD(P)H as a co-substrate,
while many other use other physiological redox partners (such as membrane quinols,
cytoplasmatic and periplasmatic cytochromes, ferredoxins or coenzyme F420).

36 L. B. Maia et al.



Table 1 Summary of the features of some representative formate dehydrogenases and N-
formyl-methanofuran dehydrogenases

Enzyme Active
sitea

Subunit
composition

Notes

Clostridium
carboxidivorans FDH

W
SeCys

a
W, [4Fe–4S]

• cytoplasmatic?
• NAD+-dependent

Thermoanaerobacter
kivui FDH

• hydrogen-dependent CO2

reductase

Desulfovibrio gigas
FDH

ab
a: W, [4Fe–4S]
b: 3 [4Fe–4S]

• periplasmatic

Desulfovibrio
alaskensis FDH

Desulfovibrio
vulgaris
FDH

Moorella
thermoacetica FDH

(ab)2
a: W, [4Fe–4S]
b: 3 [4Fe–4S]

• cytoplasmatic
• NADP+-dependent

Synthrobacter
fumaroxidans FDH

(abc)2
W, Fe

• periplasmatic?

Methylobacterium
extorquens FDH

W
Cys

ab
a: W, � 1 Fe/S
b: [4Fe–4S],
FMN

• cytoplasmatic
• NAD+-dependent

Escherichia coli
FDH H

Mo
SeCys

a
Mo, [4Fe–4S]

• cytoplasmatic
(membrane-bound via its partners)
• partner of formate-hydrogen lyase
system

Acetobacterium
woodii FDH

• hydrogen-dependent CO2

reductase

Desulfovibrio
desulfuricans FDH

abc
a: Mo, [4Fe–4S]
b: 3 [4Fe–4S]
c: 4 c haems

• periplasmatic

Desulfovibrio
vulgaris FDH

Escherichia coli FDH
N

(abc)3
a: Mo, [4Fe–4S]
b: 4 [4Fe–4S]
c: 2 b haems

• membrane-bound
periplasm-faced

• partner in anaerobic
nitrate-formate

respiratory system

Escherichia coli FDH
O

• membrane-bound
periplasm-faced

• partner in nitrate-formate
respiratory system during aerobic
to anaerobic transition

(continued)
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Table 1 (continued)

Enzyme Active
sitea

Subunit
composition

Notes

Pectobacterium
atrosepticum FDH

Mo
Cys

a
Mo, [4Fe–4S]

• cytoplasmatic

Corynebacterium
glutamicum FDH

Clostridium
pasteurianum FDH

ab
Mo, several Fe/S

• cytoplasmatic

Methanobacterium
formicicum FDH

ab
Mo, FAD,
several Fe/S,
Zn

• cytoplasmatic
• F420-dependent

Wolinella
succinogenes FDH

abc
a: Mo, [4Fe–4S]
b: 4 [4Fe–4S]
c: 4 b haems

• membrane-bound

Cupriavidus
necator FDH

(abc)2
a: Mo, [2Fe–2S],
4 [4Fe–4S]
b: [4Fe–4S],
FMN
c: [2Fe–2S]

• cytoplasmatic
• NAD+-dependent

Rhodobacter
capsulatus FDH

Methylosinus
trichosporium FDH

Pseudomonas
oxalatus FDH

Methylosinus
trichosporium FDH

(abcd)2
Mo, � 1 [2Fe–2S],
� 1 [4Fe–4S],
FMN

• cytoplasmatic
• NAD+-dependent

Methanothermobacter
wolfeiir FMFDH

(abcdex)4
a: 2 Zn
b: Mo, [4Fe–4S]
c: 2 [4Fe–4S]
c: 4 b haems
d
e: 8 [4Fe–4S]
x

• cytoplasmatic

a Active site composition, besides the two pyranopterin cofactor molecules and the terminal sulfido
group
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4.2.1 The Metal-Independent Formate Dehydrogenases
Comparatively, the metal-independent FDHs are quite simple enzymes, generally
forming homodimers, containing a NAD(H) and a formate-binding pockets in a
close vicinity of each other (Fig. 3) [102–109]. The formate-binding site harbours a
conserved arginine and asparagine residues, while an aspartate and serine residues
make contacts to the nicotinamide ring, with another arginine residue binding the
phosphate moiety linker of NAD(H).

4.2.2 The Metal-Dependent Formate Dehydrogenases
Because the metal-dependent FDHs are involved in diverse metabolic pathways
(energy and C1 metabolism), for which different “interfaces” are needed, this class
is extraordinarily heterogeneous, comprising enzymes with diverse redox-active
centres, such as iron–sulfur centres (Fe/S), haems and flavins, besides the charac-
teristic molybdenum or tungsten active sites, organised in different subunit com-
positions and quaternary structures (Table 1) [94–101, 110–112]. This structural
diversity is well exemplified by Escherichia coli, that expresses one “simple”
monomeric cytoplasmatic enzyme, containing only the molybdenum centre and one
[4Fe–4S] centre (the FDH H; Fig. 4) [113–117], and two “complex” heteromeric
((abc)3) membrane-bound respiratory enzymes that harbour seven additional
redox-active centres ([4Fe–4S] centres and b-type haems) in addition to the
molybdenum centre (the FDH N [118–120] (Fig. 5) and FDH O [121–123]). Also,
the sulfate-reducing bacteria of the Desulfovibrio genus contain diverse Mo-FDHs
and W-FDHs [124–129], such as the heterodimeric (ab) periplasmatic W-FDH of

A B

NAD

N3- NAD

N3-

C
N3-

NAD

His311

Arg258
Asn119

Fig. 3 C. boidinii formate dehydrogenase. A Three-dimensional structure view of the homod-
imer. B Arrangement of NAD and azide shown in the same orientation (but not same scale) as in
(A). C Enzyme active site, with azide and NAD bound. The structures shown are based on the
PDB file 5DN9 [109] (a helices and b sheets are shown in red and cyan, respectively)
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D. gigas [130] or D. vulgaris [129, 131, 132], with “only” four [4Fe–4S] centres
and one tungsten centre (Fig. 6) [133, 134], or the more “complex” heteromeric
(abc) Mo-FDH of D. desulfuricans [135–137] or D. vulgaris [129, 131] that
contains eight redox-active centres ([4Fe–4S] centres and c-type haems) in addition
to the molybdenum centre. Remarkably, the overall protein fold of the molybdenum
—and tungsten-containing subunits, including the arrangement of Fe/S centre, is
highly conserved4 [116, 117, 119, 130, 132, 138–140].

The diversity of metal-dependent FDHs is also observed through their “molec-
ular plasticity”. Some FDHs take part in formate-hydrogen lyase systems, as is the
case of FDH H from E. coli (Mo-FDH) [141], Pectobacterium atrosepticum
(Mo-FDH) [142] or C. carboxidovorans (W-FDH) [143–147]. Physiologically, the
E. coli formate-hydrogen lyase is a membrane-bound system involved in formate

A B

Mo
Fe/S

SeCys140

His141

Arg333

C D

SeCys140

His141

Arg333

E
SeCys140

His141

Arg333

Fig. 4 E. coli formate dehydrogenase H. A Three-dimensional structure view. B Arrangement of
the redox-active centres shown in the same orientation (but not same scale) as in (A).
C Molybdenum catalytic centre of oxidised enzyme. D Molybdenum catalytic centre of reduced
enzyme as suggested by Boyington et al. in 1997 [116]. EMolybdenum catalytic centre of reduced
enzyme as suggested by Raaijmakers and Romão in 2006 [117]. The structures shown are based
on the PDB files 1FDO (A, B, C), 1AA6 (D) [116] and 2IV2 (E) [117] (a helices and b sheets are
shown in red and cyan, respectively)

4Presently, only five FDHs have been structurally characterised: the E. coli Mo-FDHs FDH H
[116, 117] and FDH N [119], the D. gigas W-FDH [130], the D. vulgaris W-FDH [132] and the
Rhodobacter capsulatus Mo-FDH [138] were crystallographically characterised; the R. capsulatus
enzyme structure was also determined by cryo-electron microscopy [139]. In addition, also the
crystallographic structure of the tungsten-containing Methanothermobacter wolfeii N-
formyl-methanofuran dehydrogenase, a structurally related enzyme (see below), was solved [140].
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oxidation and dihydrogen formation under fermentative growth conditions [141,
148–151]. The system comprises two enzymes, the cytoplasmatic Mo-FDH (de-
scribed above) and a membrane-bound, cytoplasm-faced nickel/iron-containing
hydrogenase (Ni/Fe-Hase); FDH oxidises formate to CO2 and the resulting reducing
equivalents are transferred, through three Fe/S proteins, to the Ni/Fe-Hase that
reduces protons to dihydrogen (Fig. 7).

A different rearrangement of the same basic features (FDH plus Hase) is found in
cytoplasmatic dihydrogen-dependent FDHs (better denominated as CO2 reductases),
that physiologically catalyse the reduction of CO2 to formate with the simultaneous

SeCys196
His197

Arg446

C

A B
Mo

FS0

FS1

FS4

FS2

FS3

bP

bC

cardiolipin

m
em

br
an

e
pe

rip
la

sm
cy

to
pl

as
m

Fig. 5 E. coli formate dehydrogenase N. A Three-dimensional structure view. B Arrangement of
the redox-active centres shown in the same orientation (but not same scale) as in (A).
C Molybdenum catalytic centre of oxidised enzyme. The structures shown are based on the PDB
file 1KQF [119] (a helices and b sheets are shown in red and cyan, respectively)
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A

SeCys158

His159
Arg407

E

B C
W

Fe/S

Fe/S

Fe/S

Fe/S

D
W

Fe/S

Fe/S

Fe/S

Fe/S

F G

SeCys192

His193

Arg441

SeCys192

His193Arg441

Fig. 6 D. gigas (A, B, E) and D. vulgaris (C, D, F, G) formate dehydrogenases.
A Three-dimensional structure view of D. gigas W-FDH. B Arrangement of the redox-active
centres of D. gigas W-FDH, shown in the same orientation (but not same scale) as in (A).
C Three-dimensional structure view of D. vulgaris W-FDH. D Arrangement of the redox-active
centres of D. vulgaris W-FDH, shown in the same orientation (but not same scale) as in (C).
E Tungsten catalytic centre of oxidised D. gigas W-FDH. F Tungsten catalytic centre of oxidised
D. vulgaris W-FDH. G Tungsten catalytic centre of formate-reduced D. vulgaris W-FDH. The
structures shown are based on the PDB files 1H0H (A, B, E) [130], 6SDR (C, D, F) and 6SDV
(G) [132] (a helices and b sheets are shown in red and cyan, respectively)

Fig. 7 Predicted architecture of the E. coli formate-hydrogen lyase. B, F and G represent three
Fe/S proteins. See text for details Adapted with permission from Ref. [149]
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and direct oxidation of dihydrogen, that is, without the intervention of an external
electron-transfer protein or molecule, as reviewed by Litty and Müller in this Book
[152] and also [153–159]. The dihydrogen-dependent CO2 reductase of the acetogen
A. woodii is a tetramer (abcd), holding one FDH-like subunit comprising one
molybdenum and one [4Fe–4S] centres, where CO2 is reduced; the necessary elec-
trons are transferred intramolecularly from an iron–iron hydrogenase-like
(Fe/Fe-Hase) subunit (second active site), via two small electron-transfer subunits
(each with four [4Fe–4S] centres) (Fig. 8) [153]. A tungsten-containing homologue
enzyme is found in Thermoanaerobacter kivui [156].

A further example of the “plasticity” of FDH-like proteins is provided by N-
formyl-methanofuran dehydrogenases (FMFDH) that also have two physically
separated active sites: one catalyses the reduction of CO2 to formate, which is then
intramolecularly transferred to the second active site, where it is condensed with
methanofuran to form N-formyl-methanofuran (Eq. 4) [140, 160, 161]. The
FMFDHs are even more complex than FDHs and the enzyme from the methanogen
M. wolfeii is a tetramer of (abcdex) units, whose CO2-reducing subunit shares the
tungsten and [4Fe–4S] centres, as well as, the protein fold of the W-FDHs and
Mo-FDHs (Fig. 9).

In contrast to the structural and organisational diversity, the active site of all
presently known metal-dependent FDHs and FMFDH is very well conserved [94–
101, 110–112, 140]. In the oxidised form, the active site harbours one molybdenum
ion (in the case of Mo-FDHs and Mo-FMFDHs) or one tungsten ion (in W-FDHs
and W-FMFDHs) coordinated by the cis-dithiolene (–S–C = C–S–) group of two
pyranopterin cofactor molecules (Fig. 10), as is characteristic of this family of
mononuclear molybdenum and tungsten enzymes [97, 110–112, 162–165]. The
metal first coordination sphere is completed by one terminal sulfido group
(Mo/W = S)5 plus one sulfur or selenium atom from a cysteine or selenocysteine
residue (Mo/W–S(Cys) or Mo/W–Se(SeCys)) (abbreviated as Cys–Mo–FDH,
Cys–W–FDH, SeCys–Mo–FDH and SeCys–W–FDH), in a distorted trigonal
prismatic. Noteworthy, there is no apparent relation (as far as is presently known)
between the metal and the bound amino acid residue (examples of the four com-
binations Cys–Mo–FDH, Cys–W–FDH, SeCys–Mo–FDH and SeCys–W–FDH are
known for long; Table 1) or the enzyme activity. The active site also comprises two
other residues that are strictly conserved to all known FDHs and FMFDHs and are
thought to be crucial to the catalytic cycle (as discussed below), one arginine and
one histidine (this linked (C-terminal side) to the selenocysteine or cysteine that
coordinates the molybdenum or tungsten ion) [116, 117, 119, 130].

5Although initially thought to be an oxygen [116], it is now unambiguously established that this
terminal atom it is a sulfur, in both Mo-FDHs and W-FDHs, as well as in FMFDH, as established
by X-ray crystallography and XAS [117, 140, 166]. In addition, it was already identified the
sulfotransferase that, in conjunction with the IscS cysteine desulfurase, catalyses the insertion of
this ligand in the active site [167–169].
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Fig. 8 Structural organisation of A. woodii (molybdenum-dependent) and T. kivui
(tungsten-dependent) dihydrogen-dependent CO2 reductases. ET represents two small
electron-transfer subunits. See text for details Adapted with permission from Ref. [156]. http://
creativecommons.org/licenses/by/4.0/
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Fig. 9 M. wolfeii N-formyl-methanofuran dehydrogenase. A Three-dimensional structure view.
B Arrangement of the redox-active centres shown in the same orientation (but not same scale) as in
(A). C Tungsten catalytic centre of oxidised enzyme. The structures shown are based on the PDB
file 5T5I [140] (a helices and b sheets are shown in red and cyan, respectively)
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4.3 Formate Dehydrogenases—Mechanism of Action

4.3.1 The Metal-Independent Formate Dehydrogenases
The metal-independent FDHs are NAD-dependent enzymes, whose chemical
strategy to interconvert formate and CO2 is surprisingly simple and well established
(Fig. 11) [102–109]: the enzyme binds formate and NAD+ in close proximity of
each other (1.4 Å distance between H-(formate) and C4-(pyridine ring)) and makes
NAD+ acquire a bipolar conformation, which increases its electrophilicity and, thus,
facilitates the hydride transfer. The reaction, then, proceeds by straightforward
hydride transfer from formate to NAD+. In accordance, the rate-limiting step of the

pyranopterin cofactor 

6+ 6+

molybdenum/tungten centre in the oxidised state

4+ 4+ 4+

molybdenum/tungten centre in the reduced state

Fig. 10 Active site of formate dehydrogenase and N-formyl-methanofuran dehydrogenase.
Structure of the pyranopterin cofactor (top). The pyranopterin cofactor molecule is formed by
pyrano(green)-pterin(blue)-dithiolene(red)-methylphosphate(black) moieties; in all so far charac-
terised FDHs, the cofactor is found esterified with a guanosine monophosphate (dark grey). The
dithiolene (–S–C = C–S–) group forms a five-membered ene-1,2-dithiolene chelate ring with the
molybdenum or tungsten ion, here indicated as M (from metal). Structure of the
molybdenum/tungsten centre in the oxidised state (middle). For simplicity, only the dithiolene
moiety of the pyranopterin cofactor is represented. Structure of the molybdenum/tungsten centre in
the reduced state (bottom). For simplicity, only the dithiolene moiety of the pyranopterin cofactor
is represented. Contrary to the oxidised state (that is consensually accepted), the structure of the
reduced state is still under debate, as discussed below, under Sect. 4.3.2b. The two hypotheses
under debate are represented, with the cysteine or selenocysteine residue bound to the metal and
with the residue dissociated from the metal (Sect. 4.3.2b)
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catalytic cycle is the formate C–H bond cleavage, as shown by kinetic studies of the
2H-labelled formate isotopic effect), and the enzyme operate via a ternary complex
(FDH-formate-NAD+) kinetic mechanism [107, 170–178].

4.3.2 The Metal-Dependent Formate Dehydrogenases
Several experimental and some computational approaches have been exploited to
elucidate how the metal-dependent FDHs carry out the formate/CO2 interconver-
sion and over the years a few mechanistic proposals have been put forward [116,
117, 137, 166, 169, 179–185]. Presently, several key points are well established,
but two remain a matter of debate, and all are discussed below, before the currently
accepted mechanistic hypotheses are introduced.

(a) Presently, several key points are well established

(i) The formate/CO2 interconversion occurs at the molybdenum or tungsten centre,
in a reaction that is intermediated by the metal, which cycles between the +6
and +4 oxidation states (Eq. 5a–5d), as demonstrated by numerous spectro-
scopic and kinetic studies. The electrons necessary to carry out CO2 reduction
or released from formate oxidation are intramolecularly transferred from the
physiological partner (electron donor or electron acceptor), through the dif-
ferent redox centres of each enzyme (Fe/S centres, haems, FAD (see above))
that act like a “wire” to facilitate the fast and effective electron transfer.
Therefore, the intramolecular electron transfer is, thus, an integral aspect of the
global reaction. Depending on the enzyme (on the biochemical pathway where
the enzyme is involved in), the physiological redox partner can be membrane

Fig. 11 Hydride transfer mechanism proposed for metal-independent NAD-dependent formate
dehydrogenases

46 L. B. Maia et al.



quinols, cytoplasmatic and periplasmatic cytochromes, ferredoxins, NAD(P) or
coenzyme F420 [94–101]. For those enzymes like the dihydrogen-dependent
CO2 reductase (see above), the electrons are directly provided by the
co-substrate oxidation (dihydrogen in this case) that occurs in the enzyme
second active site. As a consequence of the physical separation of the oxidation
and reduction half-reactions (that occur at different enzyme centres), all these
enzymes operate via a ping-pong kinetic mechanism, as observed
experimentally.

HCOO� þMo=W6þ � CO2 þ Hþ þ Mo=W4þ ð5aÞ

Mo=W4þ þ Physiol: Partneroxidised � Mo=W6þ þ Physiol: Partnerreduced ð5bÞ

CO2 þ Hþ þ Mo=W4þ � HCOO� þ Mo=W6þ ð5cÞ

Mo=W6þ þ Physiol: Partnerreduced � Mo=W4þ þ Physiol: Partneroxidised ð5dÞ

(ii) Although the formate/CO2 interconversion occurs at the molybdenum or
tungsten centre, the reaction is not one of oxygen atom transfer, as is char-
acteristic of many molybdoenzymes and tungstoenzymes (Fig. 12) [94, 97,
110–112, 162–165]: the substrate for “CO2 reduction” is in fact CO2 and not
hydrogencarbonate (Eq. 6) [186], and the product of formate oxidation is CO2

and not hydrogencarbonate (Eq. 7), as was clearly demonstrated by the for-
mation of 13C16O2 gas during the oxidation of 13C-labelled formate in
18O-enriched water [166]. Therefore, to catalyse the formate oxidation, FDH
has to abstract one proton plus two electrons (Eq. 8) or one hydride (Eq. 9)
from the formate molecule (or the reverse for CO2 reduction).

ð6Þ

ð7Þ

ð8Þ

ð9Þ

(iii) A simple chemical reasoning, based on the pKa values of formic acid
(HCOOH/HCOO− = 3.77; HCOO−/CO2

2− � 14), demonstrates that it is
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much more difficult to abstract the Ca proton from formate (Eq. 8) than
abstract a hydride (Eq. 9), which, in addition, lead to the formation of a
stable product (CO2), instead of a carbonanion (CO2

2−) (Scheme 1). The
simple mechanistic strategy followed by the metal-independent FDHs
(Sect. 4.3.1.), that is, direct reaction with NAD+, with no enzyme cofactors
involved, further confirms that it must be exceptionally facile (thermody-
namics) to abstract a hydride from the formate molecule. On its turn, CO2,
with an electronic structure O −−dC+2d− O−d and a carbon-localised
LUMO, is susceptible to attack by nucleophiles and to reduction, being a
good hydride acceptor, as supported by the chemistry of several synthetic
transition metal-hydride complexes that mimic the FDH catalysis [65, 67,
187–192].

(iv) The terminal sulfido group of the active site (Fig. 10) is well documented as
a hydride acceptor/donor. Since the 1970s, the sulfido group is established as
the hydride acceptor in the oxidised molybdenum centre (Mo6+=S) of xan-
thine oxidase and aldehyde oxidase6 [110–112, 162–165, 193–202], as well

Mo/W6+O
Mo/W4+OQ
Mo/W4+OR

R

2e-+2H+ RO

H2O2e-+2H+

QO

H2O

Q

Mo/W4+OH2

Mo/W4+ + H2O

Fig. 12 Oxygen atom transfer in molybdo—and tungstoenzymes. Typically, these enzymes
catalyse the transfer of an oxygen atom from water to product—oxygen atom insertion (blue
arrows)—or from substrate to water—oxygen atom abstraction (green arrows)—in reactions that
entail a net exchange of two electrons, in which the molybdenum/tungsten atom cycle between
Mo/W6+ and Mo/W4+, and, most importantly, where the metal is the direct oxygen atom acceptor
or donor. This feature was coined by Holm and others in the 1980s as the “oxo transfer
hypothesis”

6 Xanthine oxidase catalyses the hydroxylation of xanthine to urate. To carry out this reaction,
xanthine oxidase promotes the cleavage of the C8–H bond of xanthine, with the hydride being
transferred from the xanthine moiety to the active site sulfido group (Mo6+=S ! Mo4+–SH);
simultaneously, the active site catalyses the insertion of an oxygen atom in the xanthine moiety to
produce urate (Mo6+–O− ! Mo4+). Aldehyde oxidase catalyses the conversion of aldehydes into
the respective carboxylates, following the same chemical strategy: cleavage of the C–H bond, with
transfer of hydride to the sulfido group, and subsequent insertion of an oxygen atom.
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as, the hydride donor in the reduced centre (Mo4+–SH) of
hydroxybenzoyl-CoA reductase7 [203, 204]. This “twin” behaviour
(oxidised/hydride acceptor versus reduced/hydride donor) is supported by a
remarkable characteristic of the Mo/W-ligands: the pKa values of the coor-
dinated ligands change dramatically with the oxidation state of the metal and
determine that the higher oxidation states should hold deprotonated ligands,
that is Mo/W6+=S, while the lower oxidation states should hold protonated
ligands, that is Mo/W4+

–SH [205–207]. This behaviour (Eq. 10) enables the
metal-sulfido to act as a hydride acceptor/donor and is supported by the high
covalency of the terminal sulfur atom in the metal sulfido group, with an
available S p-bond well suited to accept a hydride.

Mo=W6þ ¼ Sþ 2e� þ Hþð Þ � Mo=W4þ � SH ð10Þ

The involvement of the sulfido group as the hydride acceptor during FDH
catalysis was demonstrated by electron paramagnetic resonance (EPR) spectro-
scopic studies that showed that, in formate-reduced FDH, the formate Ca
hydrogen atom is transferred to an acceptor group located within magnetic contact
to the molybdenum atom of FDHs from different sources (E. coli [166], D.
desulfuricans [136] or Cupriavidus necator (previously known as Ralstonia
eutropha) [184]). The observation of a strongly coupled, solvent-exchangeable
and substrate-derived proton, with a hyperfine constant of 20–30 MHz, is con-
sistent with the hydrogen atom being transferred to a ligand in the first coordi-
nation sphere of the molybdenum atom upon its reduction [196, 197, 200, 201,
208]. Similar hyperfine constant values were determined in model complexes
[209] and also in real enzymes, as in xanthine oxidase, where the strong coupled
hydrogen is originated from the xanthine C8 hydrogen atom (the position that is
hydroxylated by that enzyme (see Footnote 6) [196–198, 200–202, 208]. It should
be noted that a hyperfine interaction of this magnitude could not arise from the
transfer of the formate Ca hydrogen atom to an acceptor in the second coordi-
nation sphere of the metal, for example, transfer to the conserved histidine resi-
due, as initially proposed [116, 117, 166, 169, 180–183], or transfer to the
selenocysteine/cysteine residue if it had been dissociated from the

Scheme 1 Products formed by proton abstraction (ruled by a pKa2 >> 14) or hydride abstraction
from formate

7 Hydroxybenzoyl-CoA reductase catalyses the reverse reaction of the xanthine oxidase one, with
insertion of a hydride and abstraction of an oxygen atom.
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molybdenum/tungsten ion [117, 169, 180–183]—an hypothesis discussed below
in point (vi). Photolysis assays with 77Se-enriched FDH, described below in point
(vi) and Footnote 8, further confirmed that the selenocysteine residue cannot be
the hydrogen atom acceptor [166].

Further evidence that the sulfido group becomes protonated upon reduction was
also provided by a recent X-ray absorption spectroscopy (XAS) study with the R.
capsulatus Mo-FDH [210].

(v) The terminal sulfido group is essential to both formate oxidation and CO2

reduction. It is well established, by numerous spectroscopic and kinetic studies,
that cyanide reacts with the active site sulfido group of different molybdoen-
zymes, such as xanthine oxidase, and abstracts it in the form of thiocyanate,
yielding a desulfo enzyme form that harbours an oxo group in the place of the
native sulfido group [110–112, 193–195, 198, 199, 202]. The sulfido by oxo
replacement renders xanthine oxidase and other enzymes inactive, because its
active site is no longer able to accept a hydride (see Footnote 6). The same and
complete cyanide inhibition is observed in several FDH, such as the ones from
Methanobacterium formicicum [211], Alcaligenes eutrophus [212], E. coli
[167], R. capsulatus (where the sulfido was observed to be replaced by an oxo
group) [210], or D. desulfuricans (where thiocyanate formation accounted to
0.87 per molybdenum atom) [137]. Together with the experimental evidences
that support the involvement of the sulfido group as a hydrogen atom acceptor
during FDH catalysis (described above), these inhibitory results demonstrate
that the sulfido group acts as a hydride acceptor/donor in FDH catalysis.

(b) Two interrelated points are not yet consensual

(vi) Does the active site cysteine or selenocysteine residue dissociate from the
metal during catalysis?

If the configuration of the oxidised active site is consensually accepted, the reduced
form still finds a few contradictory experimental evidences (Fig. 10).

X-ray crystallography: In a reinterpretation of the crystallographic data of the
reduced E. coli SeCys–Mo–FDH H originally obtained by Boyington et al. in
1997 [116], Raaijmakers and Romão in 2006 [117] suggested that the polypeptide
loop containing the selenocysteine was not properly traced in the original work and
that the selenocysteine residue is not bound to the metal, but, instead, is found
dissociated from the molybdenum ion and shifted away (12 Å) (Fig. 4). Therefore,
those authors suggested that, while in the oxidised state the selenocysteine residue
is coordinated to the metal, the enzyme reduction triggers the residue dissociation,
resulting in a square pyramidal penta-coordinated centre, where the molybdenum
ion is coordinated by the cis-dithiolene (–S–C = C–S–) group of two pyranopterin
cofactor molecules (in the equatorial positions) plus the terminal sulfido group (in
the axial position) (Fig. 10). Regardless of this reinterpretation, all other
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crystallographic structures so far available, for FDH and FMFDH (Figs. 4, 5, 6 and
9, and references herein), show a stable hexa-coordination, with the cysteine or
selenocysteine always bound to the molybdenum/tungsten ion. This is also the case
of the recently solved structure of the formate-reduced D. vulgaris SeCys–W–FDH
[132] and also of the NADH-reduced R. capsulatus Cys–Mo–FDH, whose structure
was determined by cryo-electron microscopy [139].

XAS: Two recent XAS studies at the Mo K-edge suggested that, in R. capsulatus
Cys–Mo–FDH, the Mo5+ state holds the cysteine residue bound to the metal, as the
oxidised Mo6+ one, with a Mo-S(Cys) bond of 2.63 Å, while the Mo4+ state of
formate-reduced enzyme has its cysteine displaced form the metal [169, 210].
However, contrary results were obtained with SeCys–Mo–FDHs from E. coli [213]
and D. desulfuricans [214], which showed a metal bound residue in all oxidised and
reduced states: the E. coli enzyme EXAFS data at both the Mo and Se K-edges were
interpreted as indicating the presence of one Mo–Se bond of 2.62 Å, plus one Se–S
bond of 2.19 Å (between the sulfido group and the selenocysteine selenium) [213].

EPR spectroscopy: Further experimental evidence for the stable
molybdenum/tungsten hexa-coordination came from EPR spectroscopy that clearly
showed that the selenocysteine/cysteine must remain bound to the Mo5+ centre of
formate-reduced enzyme [208]. When the EPR spectrum is obtained from
77Se-enriched enzyme, a very strong and anisotropic interaction with selenium is
observed (A1,2,3(

77Se) = 13.2, 75, 240 MHz) [166]. This interaction and the
observation of the expected 95,97Mo hyperfine coupling confirms that the selenium
atom of the selenocysteine is directly coordinated to the Mo5+ and further suggests
that the unpaired electron is delocalised over the selenium (17–27%) and molybde-
num atoms (73–83%) [166]. Also, the hydrogen atoms of the b-methylene carbon of
the selenocysteine residue are thought to be in the close proximity of the molybde-
num atom, being responsible for an interaction with a not solvent-exchangeable
protons (A1 = 35.1 MHz) [136]. Photolysis assays additionally confirmed that the
selenium/sulfur ligation is retained in the FDH Mo5+ centre (the light beam did not
affect the strong selenium–molybdenum EPR interaction observed in 77Se-enriched
FDH)8 [166]. The Mo5+ hexa-coordination (resulting from having the selenocysteine/
cysteine residue bound to the molybdenum ion) was also supported by theoretical
calculations on the signals-giving species of FDHs [215].

Inhibition assays: A different type of experimental evidence came from inhibi-
tion studies with iodoacetamide, an alkylating agent that reacts with “free” ionised
selenocysteine or cysteine residues (carboxamidomethylation). Native E. coli
SeCys–Mo–FDH H and its cysteine mutant [216] and native R. capsulatus Cys–
Mo–FDH [183] are not inhibited by iodoacetamide treatment. However, when the
preliminary iodoacetamide treatment (incubation) is carried out in the presence of
formate (not under turnover), both native and cysteine-containing mutant E. coli

8 These photolysis assays also demonstrate that the selenocysteine residue is not the formate Ca
hydrogen acceptor [166]: while the light beam did not affect the 77Se interaction, it induced the
photolysis of the solvent-exchangeable formate-derived proton, showing that the selenocysteine
residue does not bind the strongly coupled proton mentioned above.
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FDHs are inhibited [216]. Inhibition is also observed in the R. capsulatus FDH, but
only when the iodoacetamide treatment (incubation) is carried out in the presence of
nitrate; in this case, the cysteine carboxamidomethylation was confirmed by mass
spectroscopy [183]. On the other hand, native D. vulgaris SeCys–W–FDH is
inhibited by iodoacetamide, but mass spectroscopy clearly showed that the inhi-
bition is not due to the carboxamidomethylation of the active site selenocysteine
residue (but of 9 other cysteine residues not present in the active site) [132]. In
addition, other FDHs are not at all affected by iodoacetamide [135, 136]. Hence, the
inhibition results available were not obtained under formate/CO2 turnover condi-
tions and the inconsistency of the results, once more, do not contribute to provide a
definitive answer.

Overall, the majority of experimental evidences points towards a
molybdenum/tungsten stable hexa-coordination, with the cysteine/selenocysteine
residue always bound to the metal. Regarding the results showing a metal
penta-coordination, with unbound cysteine/selenocysteine residue, it is possible that
the crystallisation/irradiation had induced some artefacts that are not relevant to the
enzyme activity; but it is also possible that the species crystallographically char-
acterised, being catalytically relevant, bear no relation to the species observed by
XAS and EPR (with these being not catalytically relevant). Certainly,
high-resolution structures are needed to confirm the existence of the two alternating
conformations of the selenocysteine/cysteine-containing polypeptide loop and to
discuss the catalytic relevance of each conformation.

(vii) Do formate/CO2 bind directly to the molybdenum/tungsten ion during
catalysis?

Inspired by the oxotransfer chemistry displayed by several molybdenum—and
tungsten-dependent enzymes (Fig. 12) [110–112, 162–165], and in particular by
periplasmatic nitrate reductases9, it was suggested that FDH catalysis necessarily
involves the formate/CO2 direct binding to the molybdenum/tungsten ion [180, 218].

To begin the discussion of this point, it should be noted that the direct
formate/CO2 binding would involve an unprecedented hepta-coordinated

9 The C. necator periplasmatic nitrate reductase catalyses the reduction of nitrate to nitrite
(ONO2

− + 2e−+ 2H+ ! NO2
− + H2O), and it was described to share with FDHs the same

molybdenum coordination sphere, with the cis-dithiolene (–S–C = C–S–) group of two
pyranopterin cofactor molecules, one terminal sulfido group and one sulfur atom from a cysteine
residue [217]. The similarity in the active site metal centre led some authors to suggest similar
mechanistic strategies for nitrate reductases and FDHs—leading to the so-called sulfur-shift
mechanism [180, 218].
To give further support to the hypothesis of a similar mechanistic strategy, the nitrate reductase

activity of different FDHs was investigated. The R. capsulatus Cys-Mo-FDH was described to be
able to catalyse the nitrate reduction to nitrite, even though at an extremely low catalytic constant
(kcat(nitrate) = 0.21 min−1 [183] that compares very poorly with kcat(formate) = 2124 min−1 and
kcat(CO2) = 89 min−1 [182]), and the catalysis was suggested by XAS to involve the dissociation
of the cysteine residue from the molybdenum ion, with the subsequent nitrate binding [183].
However, other FDHs failed to reduce nitrate (such as the ones from D. desulfuricans [135, 136],
D. vulgaris [132]).
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molybdenum/tungsten centre or it would depend on the dissociation of the
cysteine/selenocysteine residue from the metal, in order to create a vacant position
(penta-coordinated centre) for substrate binding. While the hypothesis of the
hepta-coordinated metal centre was (so far) never perused, the dissociation of the
cysteine/selenocysteine is, as discussed above, controversial.

The two recent XAS studies mentioned above in point (vi) suggested that, in the
presence of formate, the cysteine ligation of (active) R. capsulatus Cys–Mo–FDH is
replaced by a long Mo–O bond of 2.15 Å, which was interpreted as arising from the
Mo–OCO(H) complex [169, 210]. The strong and competitive inhibition of E. coli
SeCys–Mo–FDH H-catalysed formate oxidation by azide, cyanate, thiocyanate,
nitrite and nitrate (1–00 lM range) was also evoked to support that formate, as well
as those inhibitors, bind directly to the molybdenum ion [219]. Yet, competitive
inhibition can arise if the inhibitor binds in the active site, but not directly to the
metal10 [220]; this seems to be the case at least of azide, a well documented
inhibitor of both metal-independent [104, 171, 177] and metal-dependent [136,
166] FDHs (as suggested by EPR [136, 215]) and nitrite (as suggested by crys-
tallography11). Regarding nitrate, (once more) several other FDH enzymes are not
inhibited or the inhibition constants are 2–3 orders of magnitude higher than
Km(formate) [132, 135, 136, 166], or it is though as a substrate (even though a very
poor one; see Footnote 9 [182]). Moreover, the same study [219] showed that the
inhibition of the E. coli SeCys-Mo-FDH H-catalysed CO2 reduction by those
anions is very weak (in the range of 1–50 mM) and not competitive in nature,
results that are contradictory to the hypothesis that the reduced active site (the one
that reacts with CO2) becomes penta-coordinated, with an unbound selenocysteine
residue, and with an available position to bind inhibitors and CO2.

Therefore, except from the abovementioned XAS data, there are no other direct
experimental evidences of the direct formate or CO2 binding to the FDH
molybdenum/tungsten ion; namely, there are no crystallographic structures showing
the formate molecule in the active site and there are no EPR signals showing the
presence of formate in the first coordination sphere of molybdenum/tungsten [136,
166, 184].

10 The active site conserved arginine residue, below suggested to be key to “anchor” formate and
CO2 during turnover, could also be involved in the binding of these inhibitory anions through
electrostatic interactions—to have a strong and competitive inhibition of the formate oxidation, it
is not necessary that those anions bind directly to the molybdenum/tungsten ion it self.
The observed very weak inhibition of the CO2 reduction by those anions (mentioned below in

this point (vii)) could be explained by subtle conformational changes involving the conserved
histidine residue upon reduction of the active site. Such conformational changes were described for
D. vulgaris FDH [132] and could explain why those inhibitory anions would not be stabilised at
the arginine spot within the reduced active site. Therefore, both the formate oxidation (strong
inhibition) and the CO2 reduction (weak inhibition) could be inhibited without evoking the direct
binding of the inhibitory anions to the metal or the dissociation of the selenocysteine residue.
11 Boyington et al. [116] described the structure of E. coli SeCys-Mo-FDH treated with the
inhibitor nitrite as showing the selenocysteine bound to the molybdenum ion and the nitrite
molecule with one of its oxygen atoms at 2.58Å from the molybdenum.
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Theoretically, it can be argued that, since the FDH-catalysed reaction does not
involve the transfer of an oxygen atom (as explained above in point (ii)), there is no
need to form the otherwise expected Mo/W6+

–OCO(H) or Mo/W4+
–OCO com-

plexes (follow Mo4+–OR and Mo4+–OQ in Fig. 12). It can also be argued in the
opposite way: if formate/CO2 binds directly to the molybdenum/tungsten ion, why
there is no oxygen atom transfer to form hydrogencarbonate (Eq. 7)? Overall, in the
absence of more definitive experimental evidences, we must continue to ask: Does
the direct formate/CO2 binding to the metal occur? Is it necessary or desirable to
interconvert formate and CO2? Is the penta-coordinated metal centre with unbound
cysteine/selenocysteine catalytically relevant?

(c) Currently accepted mechanistic hypotheses

In accordance with the well-established points (i) to (v) highlighted above, the
FDH-catalysed formate oxidation and CO2 reduction are presently recognised to
occur through hydride transfer (Eq. 9), with the oxidised and reduced active site
sulfido group, Mo/W6+=S and Mo/W4+

–SH, acting as the direct hydride acceptor
and donor, respectively. Yet, points (vi) and (vii) still raise questions to some
authors regarding the coordination of the active site and substrates binding during
FDH catalysis.

As originally proposed by Niks et al. [184] for formate oxidation and shortly
after also for CO2 reduction [137], we suggest that FDH catalysis proceeds as
follows (the reaction mechanism is suggested to be identical in Mo–FDH and W–

FDH, as well as in FMFDH):
Formate oxidation (Fig. 13, blue arrows) is initiated with the formate binding to

the oxidised active site, but not directly to the molybdenum/tungsten atom. Fol-
lowing the example provided by the metal-independent FDH, where the
formate-binding site harbours arginine and asparagine residues [102–109], it is
suggested that the conserved arginine residue is essential to drive the formate Ca
hydrogen towards the sulfido ligand, by establishing hydrogen bond(s) with its
oxygen atom(s). Also, azide (N3

−, isoelectronic with CO2) is suggested to bind
(tightly) to the same site and not directly to the molybdenum/tungsten ion (as had
been previously suggested for the D. desulfuricans FDH inhibition by azide [136,
215]). The binding of azide and formate to the same site, and not to the
molybdenum/tungsten atom itself, explains why azide is a powerful inhibitor of both
metal-independent (Ki = 40 nM for Candida boidinii) [104, 171, 177] and metal-
dependent FDHs [136, 166]. A similar reasoning applies to the inhibitor nitrite
(isoelectronic with formate). Formate oxidation, then, proceeds by a straightforward
hydride transfer from formate to the sulfido group of the oxidised molybdenum/
tungsten centre, Mo/W6+=S, leading to the formation of Mo/W4+

–SH and CO2. The
re-oxidation of Mo/W4+ to Mo/W6+ (via intramolecular electron transfer to the
enzyme other(s) redox centre(s) and, eventually, to the physiological partner) and the
release of CO2 close the catalytic cycle. The now oxidisedMo/W6+ favours the sulfido
group deprotonation (dictated by the ligand pKa [205–207]), and the initial oxidised
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molybdenum/tungsten centre, Mo/W6+=S, is regenerated. Under non-steady-state
catalytic conditions (as the ones created in EPR experiments) the molybdenum/
tungsten one-electron oxidation should be favoured (Mo/W4+!Mo/W5+), leading to
the formation of the EPR detectable Mo5+–SH species.

CO2 reduction is suggested to follow the reverse reaction mechanism (Fig. 13,
green arrows). First, CO2 binds to the reduced active site, not directly to the
molybdenum/tungsten ion, but at the same site as formate (and azide), with the
conserved arginine anchoring its oxygen atom(s) through hydrogen bond(s) and
orienting its carbon atom towards the protonated sulfido ligand. In an approxi-
mated way, based on the inhibition and Michaelis–Menten constants for the
D. desulfuricans FDH, the “binding strength” is suggested to follow the order
CO2 (Km � 15 lM [137]) > azide (Ki � 30 lM [136]) > formate (Km � 60 lM
[137]). Then, the reaction proceeds through straightforward hydride transfer from
the protonated sulfido group of the reduced molybdenum/tungsten centre,
Mo/W4+

–SH, to the CO2 carbon, whose LUMO have predominant C–p orbital
character, prone to nucleophile attack and reduction. This yields a formate moiety
and Mo/W6+=S. The subsequent re-reduction of Mo/W6+ to Mo/W4+ (via
intramolecular electron transfer from the enzyme physiological partner, through its
redox centre(s)) and formate release closes the catalytic cycle. The now reduced
Mo/W4+ favours the sulfido group protonation and the initial reduced
molybdenum/tungsten centre, Mo/W4+

–SH, is regenerated.
The FDH-catalysed reaction is reversible and the equilibrium between formate

oxidation versus CO2 reduction is determined by the availability of formate versus
CO2 and the ability to maintain the active site oxidised (Mo/W6+) versus reduced
(Mo/W4+), which, in its turn, determines the protonation state of the metal sulfido
group in a concerted and straightforward way.

Overall, the chemical strategy herein suggested is exactly the same as the one
proposed for the metal-independent FDHs: both bind formate in a close proximity
to an oxidised, electrophilic, hydride acceptor, which in metal-independent
enzymes is a NAD+ molecule and in metal-dependent enzymes is the M6+=S
group; both bind CO2 in a close proximity of a reduced, nucleophilic, hydride
donor, a NADH molecule or the M4+

–SH group.
As expected, this mechanistic proposal faces some criticism and the most rele-

vant one concerns the role of the active site selenocysteine/cysteine residue. In fact,
although the mechanism is suggested to operate in a hexa-coordinated metal centre
(Fig. 13), it can also take place in a penta-coordinated centre (Fig. 10), with an
unbound selenocysteine/cysteine—the sixth ligand does not seem to interfere with
the hydride transfer12. Even though there are experimental evidences (as discussed
above) and mechanistic arguments can be envisaged to support the necessity of
having a bound selenocysteine/cysteine (as discussed in [96, 98]), in the absence of

12 It should be noted that, xanthine oxidase, for example, that also uses a terminal sulfido group
as the hydride acceptor in the conversion of xanthine to urate, has a molybdenum
penta-coordinated active site, with no amino acid residues bound to it (the molybdenum ion is
coordinated by the cis-dithiolene (–S–C = C–S–) group of one pyranopterin cofactor molecule, the
terminal sulfido group plus two oxo groups (see previous Footnotes and references in the text).

Carbon Dioxide Utilisation—The Formate Route 55



clear and definitive experimental evidences, both scenarios—dissociated and bound
selenocysteine/cysteine—seem to be possible and this is an aspect that will remain
in open for now. Certainly, future research will shed light in these aspects of the
FDH reaction, allowing a critic evaluation of this mechanistic proposal.

4.4 Formate Dehydrogenases in the Context of Carbon
Dioxide Utilisation

The majority of currently known FDHs function in vivo to oxidise formate, with
only a few participating in metabolic pathways to reduce (fix) CO2—the reaction
direction that is interesting to “solve humankind’s problem” with atmospheric CO2.
However, the CO2/formate interconversion is thermodynamically reversible (E º′
(CO2/HCOO

−) = −0.43 V) and in vitro there is no a priori reason for a FDH to be
unable to catalyse the CO2 reduction, as long as there is sufficient reducing power
available13. Regarding the metal-independent FDHs, this simply means the ade-
quate NADH/NAD+ ratio (Eq. 11); in what concerns the metal-dependent FDHs,

H++2e−

H++2e−

reductant
solvent

oxidant
solvent

Fig. 13 Reversible hydride transfer mechanism proposed for metal-dependent formate dehydro-
genase and N-formyl-methanofuran dehydrogenase [137, 184]. Reaction mechanism proposed for
formate oxidation (blue arrows) and CO2 reduction (green arrows). For simplicity, the mechanism
is represented only for a molybdenum, selenocysteine-containing enzyme, but it should be similar
for tungsten and cysteine-containing enzymes. See text for details. A similar hydride transfer
mechanism can also take place with a penta-coordinated reduced metal centre, with a dissociated
selenocysteine/cysteine residue (see text for details)

13 In vivo, in the great majority of the cases, the reaction is tuned to operate only in one direction;
this is determined by the reduction potential of the enzyme redox centres, by the available
physiological electron partners and substrates and by the redox status of the subcellular location
where the reaction takes place. The few exceptions are mainly related with regulation points of the
metabolism.
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this means that the molybdenum/tungsten active site centre must be kept reduced at
the proper reduction potential (Eq. 12). Although at first sight obvious, the
necessity to keep the enzyme active site reduced is most often overlooked, what
may explain why there are so many reports in the literature of FDHs unable to
reduce CO2. This is particularly true for metal-dependent FDHs: if the reduction
potential of one (or more) of the FDH redox centres is (are) relatively high, it could
be difficult to “push” the electrons into the active site (the centre with the higher
reduction potential could stay reduced, “blocking” the electron transfer to the other
(s) centre(s) with lower reduction potentials and the active site in particular). In
addition to thermodynamics, also the kinetics has to be taken into account to
evaluate if the CO2 reduction is going to be efficient, or too slow relatively to the
formate oxidation to be relevant (rate of formate oxidation versus CO2 reduction,
Eqs. 13, 14). The key point here is that FDH kinetics is determined by four
parameters, the Km and kcat for the two substrates (CO2 and formate), and the
reaction can be run under different regimes (mainly forward, mainly reverse and
equilibrium, as determined by kcat/Km and imposed conditions). However, except
for protein engineering (a difficult task on its own), there is not much that can be
done to modify the kinetic parameters to further favour the CO2 reduction.

CO2 þNADH ! HCOO� þNADþ ð11Þ

CO2 þ FDH Mo=W4þ� � ! HCOO� þ FDH Mo=W6þ� � ð12Þ

CO2 þAred !k
CO2

HCOO� þAox ð13Þ

HCOO� þAox !kHCCO�
CO2 þAred ð14Þ

Also, the enzymes stability and potential interfering compounds must be well
thoughtout. The lifetime of a CO2 converter device is a critical issue, and it would
greatly depend on the time the enzyme maintains its full activity. In this respect, it
should be emphasised that the purifying processes often decrease the enzymes
stability and even make them unstable (while taken out of their biological envi-
ronment), thus hampering their usage in a sustained (“real life”) way or just making
the scale up process unviable. The inhibition and inactivation by compounds that
might be present in the “substrate reaction mixture”; for example, dioxygen or
carbon monoxide, are pitfalls that must be considered to avoid the need (additional
cost) of using purified CO2. The inhibition or inactivation (or, on the contrary,
improved stability) by the materials used to build the device cannot be overlook
also.

The enzyme–material “communication” is another major challenge in hybrid
systems. It is necessary to properly orient and “link” the enzyme to the material (for
example, electrode or light absorber), via electrostatic or covalent interactions to
maximise the charge transfer. In this respect, features as the enzyme size (in the
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nanoscale) and local-specific surface charge/hydrophilicity/hydrophobicity must be
taken into consideration when choosing the materials and its functionalisations.

Having these general points tackled, any FDH could be used to build a device to
promote the CO2 reduction. The same would be true for whole-cell devices, but
considering in that case the organism whole metabolism (carbon and energy needs).

4.5 Formate Dehydrogenases in Action

The use of enzymes and whole-cells systems to convert CO2 into VC is growing
exponentially due to the “green” advantages the “biochemical way” can offer,
namely substrate and product specificity (ability to discriminate the substrate in a
complex mixture and to produce only the product of interest) in reactions at ambient
temperature and pressure and neutral pH. Numerous hybrid systems are currently
being exploited to convert CO2 into formate, following the same master lines as
described in Sect. 3 (Fig. 2). Like electrochemistry, bioelectrochemistry is currently
under intense research, as is reviewed in [221–227] and references herein (below).
Most interest is also being focused on the biophotoreduction of CO2, as solar light
represents the most straightforward way to use a RES to convert CO2.
Semi-artificial photosynthesis systems have been devised, where enzymes and also
entire metabolic pathways within cells are interfaced with synthetic materials to
develop new solar-to-VC and solar-to-fuel devices, which would not be feasible
with natural or artificial systems alone [228 and references herein (below)]. The
direct CO2 hydrogenation is also getting enormous attention, mimicking metabolic
pathways, where the formate-hydrogen lyase systems are the most explored
examples, but using also whole-cells systems. Most important are the break-
throughs achieved by exploiting the recently identified metabolic pathways of
acetogens and its dihydrogen-dependent CO2 reductase enzymes (Sect. 4.2.2.), as is
reviewed by Litty and Müller in this Book [152] and also [153–159] and references
herein (below).

Herein (below), a few promising studies and successful proof of concepts of
FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight
the power of FDHs and the challenges this CO2 bioconversion still faces.

One of the most efficient CO2 reducers so far described (along with the T. kivui
enzyme described below) is a SeCys–W–FDH from the Synthrobacter fumarox-
idans that displays an impressive rate of CO2 reduction of � 2.5 � 103s−1

(reported as 900Umg−1; Km
CO2 not determined, assays with 10 mM hydrogen-

carbonate), with a slightly lower formate oxidation rate (� 1.9 � 103s−1 (reported
as 700Umg−1); Km

HCOO− of 40 lM) [229–231]. This enzyme is also a good
electrocatalyst to carry out the electrochemical reduction of CO2 to formate, using
mild conditions and applying small overpotentials, with a maximum current
density of � 80 lAcm−2 that corresponds to � 110 s−1 (from a monolayer of
enzyme) [232]. Intriguingly, while in homogeneous catalysis in solution the CO2

reduction is slightly faster than the formate oxidation, in the electrochemical-
assisted reduction/oxidation is the formate oxidation that is more than 2 times
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faster (with a current density of � 200 lAcm−2 [232]). S. fumaroxidans expresses
another very fast CO2 reducer SeCys-W-FDH, with a rate of � 200 s−1 (reported
as 90Umg−1) [229–231], but its CO2 reduction activity cannot kinetically compete
with its highly efficient formate oxidation, rate of � 5.6 � 103s−1 (value reported
as 2700Umg−1) and Km

HCOO− of 10 lM. Unfortunately, these enzymes are
extremely oxygen-sensitive, and no further studies towards a biotechnological
application were pursuit, as far as we know.

Several other FDHs have been described to be able to reduce CO2, but at
considerably lower rates. Numerous studies have been conducted with
metal-independent FDHs, many of which relying on sacrificial electron donors
[233–248]. This is the case of the C. boidinii NAD-dependent metal-independent
FDH, that, in spite of its considerably low kcat

HCO3− value of only 0.009 s−1 (Km
HCO3−

� 27.3 mM [240]; kHCO3− � 0.3 M−1s−1; kcat
HCOO− � 5.0 s−1; Km

HCOO

− � 5.0 mM; kHCOO− � 1.0 � 103M-1s-1 [109]), has been largely exploited for its
ability to reduce CO2. To push the reaction in the desired, but thermodynamically
unfavourable, direction14 is important to remove NAD+/regenerate NADH (also
essential for the process to become cost-effective, since NADH is a very expensive
reducing agent). Four selected examples of different strategies to force the reaction
towards the CO2 reduction are: (a) an electroenzymatic cell where NADH is
electrochemically regenerated through a rhodium complex, with which a formate
formation rate of � 3.2 � 10−4 lmolmin−1mg−1 was achieved [240]; (b) elec-
trochemical NADH regeneration, but with an electropolymerised mediator-
regenerator (neutral red) in a novel cathode with immobilised FDH, which is
able to produce formate at a rate of � 60 lMmin−1) [249]; (c) photocatalytical
NADH regeneration using a rhodium complex and a visible light-active photo-
catalyst) that enabled a formate formation rate of � 1 lmolmin−1 [250]; (d) and
enzymatic regeneration, using glutamate dehydrogenase with NAD(H) being
covalently attached to micro-particles, to be easily recovered and reused, in an
approach that allowed to improve the reaction yield from 0.12 to 1.27 methanol
formed/NADH consumed (in this study, formate was further reduced to methanol)
[251]. The Thiobacillus sp KNK65MA NAD-dependent metal-independent FDH
exhibit an as well low kcat value (kcat

HCO3− � 0.32 s−1; Km
HCO3− � 9.2 mM; kHCO3

− � 35 M−1s−1), but its specificity for formate is only 3 times superior (kcat
HCOO

− � 1.8 s−1; Km
HCOO− � 16 mM; kHCOO− � 110 M.1s.1) [252]. This Thiobacillus

enzyme was successfully used to reduce CO2 by coupling it with a NADH pho-
toelectrochemical regeneration system (Fig. 14), with a formate production rate of 2
lMmin−1 (current density � 3.5mAcm−2) [245].

The metal-dependent FDHs display a wide range of CO2 reduction rates. The
Clostridium carboxidivorans NAD-dependent SeCys-W-FDH exhibits a consider-
ably low kcat

CO
2 value (only 0.08 s−1; Km

HCO3− � 50 lM) [144, 145, 147].

14 The reduction potential values of the NAD(P)+/NAD(P)H (−0.32 V) and CO2/HCOO
−

(−0.43 V) pairs indicate that the NADH-dependent CO2 reduction (Eq. 11) is thermodynamically
highly unfavourable. To force the reaction towards the CO2 reduction is important to remove the
product (NAD+) and maintain (regenerate) the substrate (NADH) concentration.
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Nevertheless, it enabled the photoelectrochemical CO2 reduction to formate within
an enzyme cascade that led to the methanol production at � 4 lMmin−1) [253].
The Methylobacterium extorquens AM1 NAD-dependent Cys-W-FDH has also
been exploited with different approaches to drive the electrochemical CO2 reduction
[242, 254–258]. Using mediated enzymatic bioelectrocatalysis with gas diffusion
electrodes15, current densities of 15–20mAcm−2 were attained [254, 255]; in a
whole-cell catalyst, M. extorquens was able to electrochemically produced formate
concentrations of up to 60 mM [242].

The R. capsulatus [182] and Cupriavidus oxalaticus [259] NAD-dependent Cys–
Mo–FDH enzymes, on the other hand, have kcat

CO
2 values, of 1.5 s−1 and � 3 s−1,

respectively, but � 25 and � 30 times (respectively) lower than the one for formate
oxidation (R. capsulatus Km

HCOO− � 280 lM and Km
CO

2 not determined, assays with
100 mM hydrogencarbonate; C. oxalaticus Km

HCOO− � 100 lM and
Km
HCO3− � 40 mM). The C. necator NAD-dependent Cys–Mo–FDH, on the con-

trary, catalyses the reduction of CO2 with a kcat
CO

2 � 11 s−1 (Km
CO

2 � 2.7 mM;
Km
NADH � 45 lM) [260, 261]. To fulfil the potential industry application of this

oxygen-tolerant and robust enzyme, it is necessary to implement a NADH regener-
ating system that pushes the reaction towards CO2 reduction (as discussed above; see
Footnote 14) [262]. With the C. necator FDH, this was successfully achieved with
the inclusion of glucose dehydrogenase in the system (Fig. 15), which, while cata-
lysing the re-reduction of NAD+ to NADH, enabled the continuous electron delivery
to drive the CO2 reduction and, therefore, improved the reaction yield from 0.2 to 1.8
formate formed/NADH consumed [262].

The E. coli SeCys-Mo-FDH H was also shown to be able to reduce CO2 [263],
but at rates considerably lower than the ones of formate oxidation, < 1 versus
160 s−1 [263]. Interestingly, when the reaction is driven electrochemically (protein
film voltammetry), the formate oxidation was only two times higher than the CO2

reduction, with current densities of 180 versus 80 lAcm−2, respectively [263]. This
E. coli enzyme feature has been exploited in fuel cell devices (FDH immobilised in
redox mediators-functionalised redox polymers) [15, 16], where CO2 could be
reduced with a very high Faradaic efficiency (99%) and a current density of � 60
lAcm−2 (Km

HCO3− � 2.5 mM) [16]. Thanks to the FDH H-containing
formate-hydrogen lyase system (Sect. 4.2.2.)16, engineered E. coli whole cells
were also used as a “cell factory” to very efficiently produce formate from a gaseous
mixture of CO2 and dihydrogen (56:44; up to 10 bar) (Fig. 16); an 100% of CO2

conversion was achieved, with formate (more than 500 mM) being accumulated
outside the bacterial cells [264]. Intact E. coli cells were also used in a microbial

15 Gas diffusion electrodes (GDE) promote electrochemical reactions between the liquid and the
gaseous phase, thus eliminating the limitations arising from slow mass transport when
hydrogencarbonate/carbonate is used as CO2 source.
16 Under physiological conditions the E. coli formate-hydrogen lyase system catalyses the
formate oxidation to CO2 coupled to the reduction of protons to dihydrogen (Sect. 4.2.2.); yet,
under a pressurised (up to 10 bar) atmosphere of CO2 and dihydrogen, engineered E. coli (with
abolished “respiratory” FDH, pyruvate-formate lyase and all major hydrogenases) whole cells
efficiently catalyse the reverse reaction of formate formation.
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electrolysis system using an iron-modified carbon cathode, with which a formate
production rate of � 10 lMmin−1, with a Faradaic efficiency of � 60%, was
attained [265].

FDHs from sulfate-reducing bacteria constitute other very interesting systems to
exploit, exhibiting high rates of CO2 reduction. The D. desulfuricans SeCys–Mo–
FDH is a strikingly efficient CO2 reducer. With a kCO2

cat � 50 s−1 and particularly
low KCO2

m � 15 lM, this enzyme has a superior specificity for CO2 (kCO2 � 3.3 �
106M−1s−1) [137]. The high Km value for formate (Km

HCOO− � 55 lM; kcat
HCOO

− � 550 s−1; kHCOO− � 10 � 106M−1s−1) enables D. desulfuricans SeCys–Mo–
FDH to be a powerful CO2 reducer, as long as the formate concentration is kept low
(is removed from the system). In addition, once the catalysis is initiated (occurring
at steady-state rates), this enzyme robustness allows the reaction to fully proceed
even in the presence of dioxygen [139]. Moreover, the D. desulfuricans SeCys–
Mo–FDH is also a good electrocatalyst (unmediated electrochemistry) to carry out
the electrochemical reduction of CO2 with good catalytic currents being attained
[266]. The ability of D. desulfuricans to produce formate was also demonstrated in
whole-cells catalysis, where the continuous formate production exhibited a maxi-
mum specific formate production rate of 14 mM formate/gdcwh, and more than
45 mM of formate were obtained with a production rate of 0.40mMh−1 [267].

Fig. 14 Schematic diagram of enzymatic photosynthesis of formic acid using Thiobacillus FDH
coupled with photoelectrochemical regeneration of nicotinamide cofactors. Co-Pi, cobalt
phosphate. See text and Ref. [245] for details. Reproduced (from Ref. [245]) by permission of
the Royal Society of Chemistry. All rights reserved. https://doi.org/10.1039/c6gc02110g
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The D. vulgaris contains also several interesting FDHs. One SeCys–Mo–FDH is
able to catalyse the CO2 reduction at a rate of � 3.4 s−1 (reported as 1Umg−1) [129,
131, 268]. However, its extremely low Km value for formate (Km

HCOO− of 8 lM) and
higher rate of formate oxidation (kcat

HCOO− � 260 s−1) makes this enzyme a very
interesting biocatalyst to oxidise formate instead, namely to be coupled to dihy-
drogen production. The proof of concept that D. vulgaris is able to produce
dihydrogen at high volumetric and specific rates (0.125 dm3 H2/dm

3h1 and 2.5 dm3

H2/gdcwh) was obtained recently, with the demonstration that whole cells are able to
grow by catalysing the oxidation of formate to hydrogencarbonate and dihydrogen,
in the absence of sulfate or a syntrophic partner [268, 269].

Fig. 16 Schematic diagram of a “cell factory” to produce formate using E. coli whole-cells. FHL,
formate-hydrogen lyase. See text and Ref. [264] for details Adapted with permission from Ref.
[264]. http://creativecommons.org/licenses/by/4.0/

Fig. 15 Schematic diagram of the enzymatic cascade reaction C. necator FDH and glucose
dehydrogenase. See text and Ref. [262] for details
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The D. vulgaris SeCys–W–FDH, on the other hand, is better suited for CO2

reduction, with a kcat
CO

2 � 315 s−1 (KCO2
m � 420 lM; kCO2 � 0.75 � 106M−1s−1)

[132]. Even though the CO2 specificity of this enzyme is considerably lower (100
times) than that for formate (kcat

HCOO− � 1310 s−1; Km
HCOO− � 17 lM; kHCOO

− � 77.5 � 106M−1s−1 [132]), this D. vulgaris W-FDH is at the base of several
very well succeeded proof-of-principle devices for semi-artificial photosynthesis
and production/storage of dihydrogen. A D. vulgaris W-FDH-containing cathode
wired to a T. elongatus photosystem II-containing photoanode with a synthetic dye
with complementary light absorption was successfully employed to drive
light-dependent CO2 conversion to formate, using water as an electron donor
(Fig. 17) [270]. In this photoelectrochemical tandem device, electrons are photo-
generated in the photosystem II, which oxidises water to dioxygen, and transferred
to the FDH cathode (this biocathode catalyses the formate formation with a current
density of 240 lAcm−2 (at—0.6 V versus SHE) and a Faradaic efficiency of
80%). The whole system is able to efficiently produce formate at 0.185 lmolcm−2,
with Faradaic efficiency of � 70%, but progressive photosystem II photodegrada-
tion (due to prolonged irradiation) resulted in an irreversible decrease in the CO2

photoreduction. A different D. vulgarisW-FDH-material configuration was recently
devised, based on a ruthenium dye [271]. The employment of this dye-sensitised
TiO2-adsorped FDH enable the visible light-driven CO2 reduction to formate with a
turnover frequency of 11 s−1, in the absence of a soluble redox mediator (Fig. 18)
[271] (comparatively, this bioelectrode reached a current density of 100 lAcm−2 (at
−0.6 V versus SHE), with a Faradaic efficiency of 92.5%). Furthermore, the D.
vulgaris FDH-mediated electroenzymatic CO2 reduction to formate was attained
using a redox viologen-based polymer/enzyme-modified gas diffusion electrode

Fig. 17 Schematic diagram of a semi-artificial photosynthetic tandem PEC cell coupling water
oxidation to CO2 reduction by D. vulgaris FDH. dpp, phosphonated diketopyrrolopyrrole dye, POs,
[poly(1-vinylimidazole-coallylamine)-[Os(bipy)2Cl]Cl redox polymer], PS II, photosystem II. See
text and Ref. [270] for details Adapted with permission from Ref. [270]
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[272]. The D. vulgaris W-FDH has also been exploited to drive the dihydrogen
formation/storage in a system that mimics the natural formate-hydrogen lyase
systems (see Sect. 4.2.2.) [273]. The semi-artificial formate-hydrogen lyase system
consists of the D. vulgaris W-FDH and D. vulgaris Ni/Fe-Hase immobilised on a
conductive scaffold of indium tin oxide that acts as an electron relay. This con-
figuration enables the overall reaction to proceed reversibly towards formate con-
version into CO2 plus dihydrogen or towards formate formation, with minimal bias
in either direction (Fig. 19), thus allowing the longed-for dihydrogen storage and
release on demand. The system is able to produce dihydrogen (upon formate
addition) at a rate of 4nmolmin−1 (turnover number of 23 � 103 and turnover
frequency of 6.4 s−1 for the Hase) or to produce formate (in the presence of
dihydrogen) at a rate of 22nmolmin−1 (turnover number of 16 � 103 and turnover
frequency of e.4 s−1 for the FDH) for 8 h (this bioelectrode system reached current
densities of 185 and 450 lAcm−2, for CO2 and H+ reduction, respectively (at
−0.6 V versus SHE) and of 300 and 440 lAcm−2 for formate and H2 oxidation,
respectively (at −0.2 V versus SHE), with Faradaic efficiencies for H2 and formate
production of 77 and 76%, respectively). Moreover, this semi-artificial
formate-hydrogen lyase concept can be deployed in either an electrochemical cell
or a self-assembled colloidal suspension, thus providing versatility for applications
in different contexts.

Fig. 18 Schematic diagram of a photocatalyst system for CO2 conversion using a
dye-semiconductor-D. vulgaris FDH arrangement. ATR-IR, attenuated total reflection infrared,
PFV, protein film voltammetry, QCM, quartz crystal microbalance, TEOA, triethanolamine. See
text and Ref. [271] for details Adapted with permission from Ref. [271]
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Acetogens and methanogens are organisms that reduce (fix) CO2 in vivo [274,
275], and, as such, they have been the focus of intense research to develop new CO2

converter devices, enzymatic and whole-cell systems, as is reviewed by Litty and
Müller in this Book [152] and also [153–159]. Herein, we only highlight the
dihydrogen-dependent CO2 reductases (Sect. 4.2.2.) from Acetobacterium woodii
and T. kivui: the former is a SeCys–Mo–FDH that catalyses the CO2 hydrogenation
with a kcat of 28 s−1 (reported as 10Umg−1; Km

HCO3− � 37 mM) and displays
slightly higher rates of formate oxidation (CO2 plus dihydrogen formation with a
kcat � 39 s−1, reported as 14Umg−1; Km

HCOO− � 1 mM) [153, 154]; the second is
a outstanding Cys–W–FDH that catalyses the CO2 hydrogenation with a kcat of 2.5
� 103s−1 (900 lmol formate min−1mg−1; Km

H2 � 130 lM—one of the fastest CO2

reducers so far described), with the reverse reaction being catalysed with a kcat of
2.7 � 103s−1 (930 lmol dihydrogen min−1mg−1; Km

HCOO− � 550 lM) [156]. The
CO2 hydrogenation equilibrium constant close to one (ΔG º′ = 3.5KJmol−1) makes
these systems ideal biocatalysts for dihydrogen storage and production. A. woodii

Fig. 19 Schematic diagram of a semi-artificial formate-hydrogen lyase system for the reversible
and selective interconversion of dihydrogen and CO2 into formate using D. vulgaris FDH. The
concept can be deployed in either an electrochemical cell (top) or a self-assembled colloidal
suspension (bottom). H2ase, hydrogenase, ITO. indium tin oxide, NP, nanoparticle. See text and
Ref. [273] for details Adapted with permission from Ref. [273]
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was successfully used as a whole-cell biocatalyst to produce dihydrogen from
formate, reaching a specific dihydrogen formation rate of � 70 mmol gprotein

−1 1h−1

(� 30 mmol gcdw
−1 h−1) and a volumetric dihydrogen evolution rate of � 80 mMh−1,

with yields up to 1 mol dihydrogen per mol formate [155]. T. kivui was successfully
exploited in a whole-cell system to convert dihydrogen plus CO2 (hydrogencar-
bonate) into formate, achieving a specific formate formation rate of � 235 mmol
gprotein
−1 1h−1 (� 150 mmol gcdw

−1 h−1) and a volumetric formate production rate of
270mMh−1; high titres up to 130 mM of formate were reached, with the key
advantage of having the unwanted acetate formation abolished [159].

5 Outlook

The global energy demand and the present high dependence on fossil fuels have
caused the increase in the atmospheric CO2 concentration for the highest values
since records began. Due to its significant greenhouse effect, CO2 rise is responsible
for large and unpredictable impacts on the Earth climate, besides being responsible
for ocean acidification (its major sink). While some authors defend that these
alterations are no longer reversible, the CO2 emissions must be greatly decelerate
and new and more efficient “CO2 sinks” must be developed to avoid worsen this
(already huge) “carbon crisis”. The three axes, storage/conversion/production, are
envisaged by many authors as the best strategy to actively reduce the CO2 emis-
sions, while actively consuming the CO2 already released—”two-in-one solution”.
Along with chemical strategies, the “biochemical way” is proving is high value in
different hybrid and biological systems to convert CO2 into fuels and VC. FDHs are
efficient catalysts to reduce CO2 to formate and are in the right way to became key
partners in the longed-for safe energy/stable climate solution.
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