Publications

Export 37 results:
Sort by: Author Title Type [ Year  (Asc)]
1984
NMR and electron-paramagnetic-resonance studies of a dihaem cytochrome from Pseudomonas stutzeri (ATCC 11607) (cytochrome c peroxidase), Villalain, J., Moura I., Liu M. C., Payne W. J., Legall J., Xavier A. V., and Moura J. J. , Eur J Biochem, Jun 1, Volume 141, Number 2, p.305-12, (1984) AbstractWebsite

A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.

1988
Immunocytochemical localization of APS reductase and bisulfite reductase in three <i>Desulfovibrio</i> species, Kremer, D. R., Veenhuis M., Fauque G., Peck H. D., Legall J., Lampreia J., Moura J. J. G., and Hansen T. A. , Archives of Microbiology, Volume 150, Number 3, p.296-301, (1988) AbstractWebsite

The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.

1991
Simulation of the electrochemical behavior of multi-redox systems. Current potential studies on multiheme cytochromes, Moreno, C., Campos A., Teixeira M., Legall J., Montenegro M. I., Moura I., Van Dijk C., and Moura J. G. , Eur J Biochem, Dec 5, Volume 202, Number 2, p.385-93, (1991) AbstractWebsite

The direct unmediated electrochemical response of the tetrahemic cytochrome c3 isolated from sulfate reducers Desulfovibrio baculatus (DSM 1743) and D. vulgaris (strain Hildenborough), was evaluated using different electrode systems [graphite (edge cut), gold, semiconductor (InO2) and mercury)] and different electrochemical methods (cyclic voltammetry and differential pulse voltammetry). A computer program was developed for the theoretical simulation of a complete cyclic voltammetry curve, based on the method proposed by Nicholson and Shain [Nicholson, R.S. & Shain, I. (1964) Anal. Chem. 36, 706-723], using the Gauss-Legendre method for calculation of the integral equations. The experimental data obtained for this multi-redox center protein was deconvoluted in to the four redox components using theoretically generated cyclic voltammetry curves and the four mid-point reduction potentials determined. The pH dependence of the four reduction potentials was evaluated using the deconvolution method described.

1993
Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Moreno, C., Costa C., Moura I., Legall J., Liu M. Y., Payne W. J., Van Dijk C., and Moura J. J. , Eur J Biochem, Feb 15, Volume 212, Number 1, p.79-86, (1993) AbstractWebsite

The electron-transfer kinetics between three different mediators and the hexahemic enzyme nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774) were investigated by cyclic voltammetry and by chronoamperometry. The mediators, methyl viologen, Desulfovibrio vulgaris (Hildenborough) cytochrome c3 and D. desulfuricans (ATCC 27774) cytochrome c3 differ in structure, redox potential and charge. The reduced form of each mediator exchanged electrons with nitrite reductase. Second-order rate constants, k, were calculated on the basis of the theory for a simple catalytic mechanism and the results, obtained by cyclic voltammetry, were compared with those obtained by chronoamperometry. Values for k are in the range 10(6)-10(8) M-1 s-1 and increase in the direction D. desulfuricans cytochrome c3-->D. vulgaris cytochrome c3-->methyl viologen. An explanation is advanced on the basis of electrostatic interactions and relative orientation between the partners involved. Chronoamperometry (computer controlled) offers advantages over cyclic voltammetry in the determination of homogeneous rate constants (faster, more accurate and better reproducibility). Direct, unmediated electrochemical responses of the hexaheme nitrite reductase were also reported.

1994
Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase, Thoenes, U., Flores O. L., Neves A., Devreese B., Van Beeumen J. J., Huber R., Romao M. J., Legall J., Moura J. J., and Rodrigues-Pousada C. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.901-10, (1994) AbstractWebsite

In this report, we describe the isolation of a 4020-bp genomic PstI fragment of Desulfovibrio gigas harboring the aldehyde oxido-reductase gene. The aldehyde oxido-reductase gene spans 2718 bp of genomic DNA and codes for a protein with 906 residues. The protein sequence shows an average 52% (+/- 1.5%) similarity to xanthine dehydrogenase from different organisms. The codon usage of the aldehyde oxidoreductase is almost identical to a calculated codon usage of the Desulfovibrio bacteria.

Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies, Palma, P. N., Moura I., Legall J., Van Beeumen J., Wampler J. E., and Moura J. J. , Biochemistry, May 31, Volume 33, Number 21, p.6394-407, (1994) AbstractWebsite

Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical ternary complex, formed between one molecule of Desulfovibrio salexigens flavodoxin and two molecules of cytochrome c3, is proposed. These molecular models of the complexes were constructed on the basis of complementarity of Coulombic electrostatic surface potentials, using the available X-ray structures of the isolated proteins and, when required, model structures (D. salexigens flavodoxin and Desulfovibrio desulfuricans ATCC 27774 cytochrome c3) predicted by homology modeling.

1995
Electrochemical studies on nitrite reductase towards a biosensor, Scharf, M., Moreno C., Costa C., Van Dijk C., Payne W. J., Legall J., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Apr 26, Volume 209, Number 3, p.1018-25, (1995) AbstractWebsite

A c-type hexaheme nitrite reductase (NiR) isolated from nitrate-grown cells of Desulfovibrio desulfuricans (Dd) ATCC 27774 catalyses the six-electron reduction of nitrite to ammonia. Previous electrochemical studies demonstrated that a simple electrocatalytic mechanism can be applied to this system (Moreno, C., Costa, C., Moura, I., LeGall, J., Liu, M. Y., Payne, W. J., Van Dijk, C. and Moura, J. J. G. (1992) Eur.J.Biochem. 212, 79-86). Its substrate specificity, availability and stability under ambient conditions makes this enzymatic system a promising candidate for use in a biosensor device. An electrochemical study of gel-immobilized Dd NiR on a glassy carbon electrode revealed both enzymatic activity and amperometric response to nitrite. In this study it was observed that the catalytic current density is a function of the nitrite concentration in solution and follows a characteristic Michaelis-Menten-type substrate dependence. Such a biosensor device (NiR-electrode) bears the option to be used for analytical determination of nitrite in complex media.

Metabolic adaptations induced by long-term fasting in quails, Sartori, D. R., Migliorini R. H., Veiga J. A., Moura J. L., Kettelhut I. C., and Linder C. , Comp Biochem Physiol A Physiol, Jul, Volume 111, Number 3, p.487-93, (1995) AbstractWebsite

After up to 21 days without food, adult male quails (Coturnix coturnix japonica) lost about 45% of the initial body weight (100-150 g). As in naturally fast-adapted and larger birds, three phases were identified during prolonged fasting in quails. Phase I lasted 2-3 days and was characterized by a rapid decrease in the rate of body weight loss and high fat mobilization. Phase II was longer and characterized by a slow and steady decline in the rates of body weight loss and of nitrogen excretion. The third (critical) period was marked by an abrupt increase in the rates of body weight loss and of nitrogen excretion. Despite their small size, the duration of phase II in quails was relatively long, a clear advantage for the study of the relationships between the several metabolic events that occur during this crucial adaptative period. Also, the beginning of phase III could be precisely determined. Changes in blood glucose, plasma FFA and triacylglycerols levels, as well as in liver and carcass lipid content were similar to those found in other species of birds. Therefore, quails seem to be a suitable model to investigate the biochemical mechanisms involved in the metabolic adjustments to prolonged food deprivation in non fasting-adapted birds.

Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni, de Jong, G. A., Caldeira J., Sun J., Jongejan J. A., de Vries S., Loehr T. M., Moura I., Moura J. J., and Duine J. A. , Biochemistry, Jul 25, Volume 34, Number 29, p.9451-8, (1995) AbstractWebsite

Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

1996
A single histidine is required for activity of cytochrome c peroxidase from Paracoccus denitrificans, McGinnity, D. F., Devreese B., Prazeres S., Van Beeumen J., Moura I., Moura J. J., and Pettigrew G. W. , J Biol Chem, May 10, Volume 271, Number 19, p.11126-33, (1996) AbstractWebsite

The diheme cytochrome c peroxidase from Paracoccus denitrificans was modified with the histidine-specific reagent diethyl pyrocarbonate. At low excess of reagent, 1 mol of histidine was modified in the oxidized enzyme, and modification was associated with loss of the ability to form the active state. With time, the modification reversed, and the ability to form the active state was recovered. The agreement between the spectrophotometric measurement of histidine modification and radioactive incorporation using a radiolabeled reagent indicated little modification of other amino acids. However, the reversal of histidine modification observed spectrophotometrically was not matched by loss of radioactivity, and we propose a slow transfer of the ethoxyformyl group to an unidentified amino acid. The presence of CN- bound to the active peroxidatic site of the enzyme led to complete protection of the essential histidine from modification. Limited subtilisin treatment of the native enzyme followed by tryptic digest of the C-terminal fragment (residues 251-338) showed that radioactivity was located in a peptide containing a single histidine at position 275. We propose that this conserved residue, in a highly conserved region, is central to the function of the active mixed-valence state.

Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins, Devreese, B., Tavares P., Lampreia J., Van Damme N., Legall J., Moura J. J., Van Beeumen J., and Moura I. , FEBS Lett, May 6, Volume 385, Number 3, p.138-42, (1996) AbstractWebsite

The primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a redox protein with two mononuclear iron sites, was determined by automatic Edman degradation and mass spectrometry of the composing peptides. It contains 125 amino acid residues of which five are cysteines. The first four, Cys-9, Cys-12, Cys-28 and Cys-29, are responsible for the binding of Center I which has a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from D. gigas. The remaining Cys-115 is proposed to be involved in the coordination of Center II, which is probably octahedrally coordinated with predominantly nitrogen/oxygen containing ligands as previously suggested by Mossbauer and Raman spectroscopy.

1997
The primary structure of the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveals an unusual type of diheme cytochrome c, Devreese, B., Costa C., Demol H., Papaefthymiou V., Moura I., Moura J. J., and Van Beeumen J. , Eur J Biochem, Sep 1, Volume 248, Number 2, p.445-51, (1997) AbstractWebsite

The complete amino acid sequence of the unusual diheme split-Soret cytochrome c from the sulphate-reducing Desulfovibrio desulfuricans strain ATCC 27774 has been determined using classical chemical sequencing techniques and mass spectrometry. The 247-residue sequence shows almost no similarity with any other known diheme cytochrome c, but the heme-binding site of the protein is similar to that of the cytochromes c3 from the sulphate reducers. The cytochrome-c-like domain of the protein covers only the C-terminal part of the molecule, and there is evidence for at least one more domain containing four cysteine residues, which might bind another cofactor, possibly a non-heme iron-containing cluster. This domain is similar to a sequence fragment of the genome of Archaeoglobus fulgidus, which confirms the high conservation of the genes involved in sulfate reduction.

1998
The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

1999
A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization, Alves, T., Besson S., Duarte L. C., Pettigrew G. W., Girio F. M. F., Devreese B., Vandenberghe I., Van Beeumen J., Fauque G., and Moura I. , Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, Oct 12, Volume 1434, Number 2, p.248-259, (1999) AbstractWebsite

Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 mu M and allowing a maximal catalytic centre activity of 116 000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. (C) 1999 Elsevier Science B.V. All rights reserved.

2000
Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617, Prudencio, M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F., Fauque G., Moura J. J., Tegoni M., Cambillau C., and Moura I. , Biochemistry, Apr 11, Volume 39, Number 14, p.3899-907, (2000) AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

2002
Zinc-substituted Desulfovibrio gigas desulforedoxins: resolving subunit degeneracy with nonsymmetric pseudocontact shifts, Goodfellow, B. J., Nunes S. G., Rusnak F., Moura I., Ascenso C., Moura J. J., Volkman B. F., and Markley J. L. , Protein Sci, Oct, Volume 11, Number 10, p.2464-70, (2002) AbstractWebsite

Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S] center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers [Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with (15)N or (15)N + (13)C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx from 3D (15)N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the (13)C(alpha) shifts were obtained from an HNCA experiment. Comparison of (1)H-(15)N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for [Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues >/=8.5 A from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits.

2003
Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6), Auchere, F., Raleiras P., Benson L., Venyaminov S. Y., Tavares P., Moura J. J., Moura I., and Rusnak F. , Inorg Chem, Feb 24, Volume 42, Number 4, p.938-40, (2003) AbstractWebsite

Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.

2004
Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase, Pauleta, S. R., Guerlesquin F., Goodhew C. F., Devreese B., Van Beeumen J., Pereira A. S., Moura I., and Pettigrew G. W. , Biochemistry, Sep 7, Volume 43, Number 35, p.11214-11225, (2004) AbstractWebsite

The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic- strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.

2006
Sample treatment for protein identification by mass spectrometry-based techniques, Lopez-Ferrer, D., Canas B., Vazquez J., Lodeiro C., Rial-Otero R., Moura I., and Capelo J. L. , Trac-Trends in Analytical Chemistry, Nov, Volume 25, Number 10, p.996-1005, (2006) AbstractWebsite

Rapid identification of proteins is of primary importance for the analytical community. Protein-biomarker discovery for medical diagnostics or pharmacological purposes is becoming one of the hottest research topics. Moreover, rapid identification of proteins can help unambiguous bacterial and virus detection. In addition, the fast identification of bacteria can be used to beat bioterrorism. As a consequence, new analytical methodologies have emerged recently with the aim of making protein analysis as fast and as confident as possible. In this article, we critically review the new trends in sample treatment for protein identification and comment on the prospects for the future in this promising analytical area. (c) 2006 Elsevier Ltd. All rights reserved.

2007
Improving sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry, Santos, H. M., Rial-Otero R., Fernandes L., Vale G., Rivas M. G., Moura I., and Capelo J. L. , Journal of Proteome Research, Sep, Volume 6, Number 9, p.3393-3399, (2007) AbstractWebsite

Three ultrasonic energy sources were studied to speed up the sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein reduction, alkylation, and enzymatic digestion steps were done in 15 min. Nine proteins, including zinc resistance-associated protein precursor from Desulfovibrio desulfuricans strain G20 and split-soret cytochrome c from D. desulfuricans ATCC27774 were successfully identified with the new protocol.

Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe, Rial-Otero, R., Carreira R. J., Cordeiro F. M., Moro A. J., Santos H. M., Vale G., Moura I., and Capelo J. L. , Journal of Chromatography A, Sep 28, Volume 1166, Number 1-2, p.101-107, (2007) AbstractWebsite

Two different ultrasonic energy sources, the sonoreactor and the ultrasonic probe, are compared for enzymatic digestion of proteins for protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDl-TOF-MS) using the peptide mass fingerprint (PMF) procedure. Variables such as (i) trypsin/protein ratio; (ii) sonication time; (iii) ultrasound amplitude; and (iv) protein concentration are studied and compared. As a general rule, the trypsin/protein ratio and the minimum protein concentration successfully digested are similar with both ultrasonic energy sources. Results showed that the time needed to digest proteins was shorter with the ultrasonic probe, 60 s versus 120 s, for the same amplitude of sonication, 50%. However, lower standard deviations and cleaner MALDI-TOF-MS spectra were obtained with the sonoreactor. In addition, the sonoreactor device provided higher sample throughput (6 samples for the sonoreactor versus 1 sample for the ultrasonic probe) and easier sample handling for lower sample volumes (25 mu l). Finally, a comparison of both methodologies for the specific identification of the adenylylsulphate reductase alfa subunit from a complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was done as a proof of the procedure. (c) 2007 Elsevier B.V. All rights reserved.

2008
Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal), Raimundo, J., Vale C., Duarte R., and Moura I. , Science of the Total Environment, Feb 15, Volume 390, Number 2-3, p.410-416, (2008) AbstractWebsite

Cd and Pb and their sub-cellular distributions were determined in Cu Concentrations of Zn,, composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment. (c) 2007 Elsevier B.V. All rights reserved.

Influence of the protein staining in the fast ultrasonic sample treatment for protein identification through peptide mass fingerprint and matrix-assisted laser desorption ionization time of flight mass spectrometry, Galesio, M., Vieira D. V., Rial-Otero R., Lodeiro C., Moura I., and Capelo J. L. , Journal of Proteome Research, May, Volume 7, Number 5, p.2097-2106, (2008) AbstractWebsite

The influence of the protein staining used to visualize protein bands, after in-gel protein separation, for the correct identification of proteins by peptide mass fingerprint (PMF) after application of the ultrasonic in-gel protein protocol was studied. Coomassie brilliant blue and silver nitrate, both visible stains, and the fluorescent dyes Sypro Red and Sypro Orange were evaluated. Results obtained after comparison with the overnight in-gel protocol showed that good results, in terms of protein sequence coverage and number of peptides matched, can be obtained with anyone of the four stains studied. Two minutes of enzymatic digestion time was enough for proteins stained with coomassie blue, while 4 min was necessary when silver or Sypro stainings were employed in order to reach equivalent results to those obtained for the overnigh in-gel protein protocol. For the silver nitrate stain, the concentration of silver present in the staining solution must be 0.09% (w/v) to minimize background in the MALDI mass spectra.

2009
Total lead and its stable isotopes in the digestive gland of Octopus vulgaris as a fingerprint, Raimundo, J., Vale C., Caetano M., Cesario R., and Moura I. , Aquatic Biology, 2009, Volume 6, Number 1-3, p.25-30, (2009) AbstractWebsite

We hypothesised that the isotopic signature of Pb in the digestive gland of the common octopus reflects the organisms' sources of Pb, and investigated whether isotopic Pb ratios are useful in characterising octopus populations. A total of 47 Octopus vulgaris individuals were captured between November 2005 and September 2006 in 2 areas of the Portuguese coast, near Matosinhos (Area A; NW coast) and Olhao (Area B; south coast), and digestive glands were analysed for total Pb and its stable isotopes. The same determinations were performed in 22 samples of surface sediments from the 2 areas. Pb concentrations in the digestive gland of specimens from Area B (2.8 to 13.0 mu g g(-1)) exceeded the values found in Area A (1.3 to 8.3 mu g g(-1)). A similar pattern was found for the isotopic Pb ratios: (206)Pb/(207)Pb was 1.173 to 1.185 for Area A and 1.165 to 1.172 for B; (206)Pb/(208)Pb was 0.476 to 0.487 for Area A and 0.318 to 0.483 for B. The different signatures of the digestive glands are in line with those observed in the surface sediments of the 2 coastal areas (e.g. (206)Pb/(207)Pb was 1.179 to 1.207 for Area A and 1.171 to 1.181 for B). However, the isotopic Pb signature of octopus was less radiogenic than that of sediments. Because octopus has a short life span (up to 24 mo) the signature reflects recent sources of Pb that have a less radiogenic signature. The Pb signature of surface sediments tends to integrate the record of the previous few years or decades, due to the frequent resuspension of the upper layer of coastal sediments. The mixing of sediments deposited during those periods results in higher isotopic Pb ratios (more radiogenic). The consistent differences between the 2 areas, in sediments and octopus, points towards the isotopic Pb signature as a possible useful tool to distinguish octopus populations.

2010
Metallothioneins and trace elements in digestive gland, gills, kidney and gonads of Octopus vulgaris, Raimundo, J., Costa P. M., Vale C., Costa M. H., and Moura I. , Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, Aug, Volume 152, Number 2, p.139-146, (2010) AbstractWebsite

Metallothionein-like proteins (MT) and V, Cr, Co, Ni, Zn, Cu, As and Cd were determined in digestive gland, gills, kidney and gonads of Octopus vulgaris, from the Portuguese coast. To our knowledge these are the first data on MT in octopus. High concentrations (mu g g(-1), dry mass) of Zn (48050) and Cd (555) were found in digestive gland, and MT reached levels one order of magnitude above the ones registered in wild bivalves. Significantly higher levels of MT in digestive gland and gills of specimens from A and B were in line with elevated Cd concentrations. Principal component analyses (PCA) point to MT-Cd and MT-Cr associations in digestive gland and gills. Despite the high levels of Zn in specimens from B, association with Zn was not obtained. Due to the affinity of MT to various elements, it should not be excluded the possibility of Cd replacing Zn in Zn-MT. Kidney presented higher levels of Cd, Co, Ni and As than gills and gonads, and in the case of As surpassing the levels in digestive gland, but PCA showed no relation with MT. Likewise the MT levels in gonads had no correspondence to the metal concentration variation. (C) 2010 Elsevier Inc. All rights reserved.