Publications

Export 21 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase, Turner, N., Barata B., Bray R. C., Deistung J., Legall J., and Moura J. J. , Biochem J, May 1, Volume 243, Number 3, p.755-61, (1987) AbstractWebsite

The molybdenum iron-sulphur protein originally isolated from Desulfovibrio gigas by Moura, Xavier, Bruschi, Le Gall, Hall & Cammack [(1976) Biochem. Biophys. Res. Commun. 72, 782-789] has been further investigated by e.p.r. spectroscopy of molybdenum(V). The signal obtained on extended reduction of the protein with sodium dithionite has been shown, by studies at 9 and 35 HGz in 1H2O and 2H2O and computer simulations, to have parameters corresponding to those of the Slow signal from the inactive desulpho form of various molybdenum-containing hydroxylases. Another signal obtained on brief reduction of the protein with small amounts of dithionite was shown by e.p.r. difference techniques to be a Rapid type 2 signal, like that from the active form of such enzymes. In confirmation that the protein is a molybdenum-containing hydroxylase, activity measurements revealed that it had aldehyde:2,6-dichlorophenol-indophenol oxidoreductase activity. No such activity towards xanthine or purine was observed. Salicylaldehyde was a particularly good substrate, and treatment of the protein with it also gave rise to the Rapid signal. Molybdenum cofactor liberated from the protein was active in the nit-1 Neurospora crassa nitrate reductase assay. It is concluded that the protein is a form of an aldehyde oxidase or dehydrogenase. From the intensity of the e.p.r. signals and from enzyme activity measurements, 10-30% of the protein in the sample examined appeared to be in the functional form. The evolutionary significance of the protein, which may represent a primitive form of the enzyme rather than a degradation product, is discussed briefly.

Ca2+ and the bacterial peroxidases: the cytochrome c peroxidase from Pseudomonas stutzeri, Timoteo, C. G., Tavares P., Goodhew C. F., Duarte L. C., Jumel K., Girio F. M. F., Harding S., Pettigrew G. W., and Moura I. , Journal of Biological Inorganic Chemistry, Jan, Volume 8, Number 1-2, p.29-37, (2003) AbstractWebsite

The production of cytochrome c peroxidase (CCP) from Pseudomonas (Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome C-551 (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus (Pa.) denitrificans was proposed to have two different Ca2+ binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca2+. The affinity for Ca2+ in the mixed valence enzyme is so high that Ca2+ returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca2+ for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca2+ in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca2+ does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome C-551) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca2+ binding site of low affinity.

Low-spin heme b(3) in the catalytic center of nitric oxide reductase from Pseudomonas nautica, Timoteo, C. G., Pereira A. S., Martins C. E., Naik S. G., Duarte A. G., Moura J. J., Tavares P., Huynh B. H., and Moura I. , Biochemistry, May 24, Volume 50, Number 20, p.4251-62, (2011) AbstractWebsite

Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mossbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mossbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g approximately 6 and g approximately 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g approximately 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.

Decavanadate as a biochemical tool in the elucidation of muscle contraction regulation, Tiago, T., Aureliano M., and Moura J. J. , J Inorg Biochem, Nov, Volume 98, Number 11, p.1902-10, (2004) AbstractWebsite

Recently reported decameric vanadate (V(10)) high affinity binding site in myosin S1, suggests that it can be used as a tool in the muscle contraction regulation. In the present article, it is shown that V(10) species induces myosin S1 cleavage, upon irradiation, at the 23 and 74 kDa sites, the latter being prevented by actin and the former blocked by the presence of ATP. Identical cleavage patterns were found for meta- and decavanadate solutions, indicating that V(10) and tetrameric vanadate (V(4)) have the same binding sites in myosin S1. Concentrations as low as 50 muM decavanadate (5 muM V(10) species) induces 30% of protein cleavage, whereas 500 muM metavanadate is needed to attain the same extent of cleavage. After irradiation, V(10) species is rapidly decomposed, upon protein addition, forming vanadyl (V(4+)) species during the process. It was also observed by NMR line broadening experiments that, V(10) competes with V(4) for the myosin S1 binding sites, having a higher affinity. In addition, V(4) interaction with myosin S1 is highly affected by the products release during ATP hydrolysis in the presence or absence of actin, whereas V(10) appears to be affected at a much lower extent. From these results it is proposed that the binding of vanadate oligomers to myosin S1 at the phosphate loop (23 kDa site) is probably the cause of the actin stimulated myosin ATPase inhibition by the prevention of ATP/ADP exchange, and that this interaction is favoured for higher vanadate anions, such as V(10).

Vanadate oligomers interaction with phosphorylated myosin, Tiago, T., Aureliano M., Duarte R. O., and Moura J. J. G. , Inorganica Chimica Acta, Nov 15, Volume 339, p.317-321, (2002) AbstractWebsite

Using a myosin preparation containing endogenous myosin light-chain (LC2) kinase and phosphatase and calmodulin, i.e. near physiological ones, the interaction of vanadate oligomers with phosphorylated myosin was evaluated. Decavanadate or metavanadate solutions (2-15 mM total vanadate) did not prevent the phosphorylation state of the regulatory myosin lightchain, as observed by urea-polyacrylamide gel electrophoresis. The relative order of line broadening upon protein addition, reflecting the interaction of the vanadate oligomers with phosphorylated myosin, was V10 > V-4 > V-1 = 1 whereas, no changes were observed for monomeric vanadate. In the presence of ATP, V-1 signal was shifted upfield 2 ppm and became broadened, while V4 signal became narrowed. Moreover, a significant increase in myosin ATPase inhibition (60%) was observed when decameric vanadate species were present (1.4 mM). It is concluded that, under conditions near physiological ones, decameric vanadate differs from vanadate oligomers present in metavanadate solutions due to its strong interaction with the phosphorylated enzyme and myosin ATPase inhibition. Besides, ATP decreases the affinity of myosin for tetravanadate, induces the interaction with monomeric vanadate, whereas it does not affect decameric vanadate interaction. (C) 2002 Elsevier Science B.V. All rights reserved.

The three-iron cluster in a ferredoxin from Desulphovibrio gigas. A low-temperature magnetic circular dichroism study, Thomson, A. J., Robinson A. E., Johnson M. K., Moura J. J., Moura I., Xavier A. V., and Legall J. , Biochim Biophys Acta, Aug 28, Volume 670, Number 1, p.93-100, (1981) AbstractWebsite

Ferredoxin II from Desulphovibrio gigas is a tetrameric protein containing a novel iron-sulphur cluster consisting of three iron atoms. The low-temperature magnetic circular dichroism (MCD) spectra of the oxidized and dithionite-reduced forms of ferredoxin II have been measured over the wavelength range approx. 300-800 nm. Both oxidation levels of the cluster are shown to be paramagnetic, although only the oxidized form gives an EPR signal. MCD magnetization curves have been constructed over the temperature range approx. 1.5-150 K and at fields between 0 and 5.1 Tesla. The curve for the oxidized protein can be fitted to a ground state of spin S = 1/2 with an isotropic g factor of 2.01. There is evidence for the thermal population of a low-lying electronic state above 50 K. The reduced protein gives a distinctive set of magnetization curves that are tentatively assigned to a ground state of S = 2, with a predominantly axial zero-field distortion that leaves the doublet Ms = +/-2 lowest in energy. The zero-field components have a maximum energy spread of approx. 15 cm-1. which places an upper limit of 4 cm-1 on the axial zero-field parameter D. The MCD spectra of the oxidized and reduced forms of the cluster are quite distinctive from one another. The spectra of the oxidized state are also different from those of oxidized high-potential iron protein from Chromatium and should provide a useful criterion for distinguishing between four- and three-iron clusters in their highest oxidation levels.

Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase, Thoenes, U., Flores O. L., Neves A., Devreese B., Van Beeumen J. J., Huber R., Romao M. J., Legall J., Moura J. J., and Rodrigues-Pousada C. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.901-10, (1994) AbstractWebsite

In this report, we describe the isolation of a 4020-bp genomic PstI fragment of Desulfovibrio gigas harboring the aldehyde oxido-reductase gene. The aldehyde oxido-reductase gene spans 2718 bp of genomic DNA and codes for a protein with 906 residues. The protein sequence shows an average 52% (+/- 1.5%) similarity to xanthine dehydrogenase from different organisms. The codon usage of the aldehyde oxidoreductase is almost identical to a calculated codon usage of the Desulfovibrio bacteria.

Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase, Thapper, A., Boer D. R., Brondino C. D., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Mar, Volume 12, Number 3, p.353-66, (2007) AbstractWebsite

Two arsenite-inhibited forms of each of the aldehyde oxidoreductases from Desulfovibrio gigas and Desulfovibrio desulfuricans have been studied by X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. The molybdenum site of these enzymes shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. Arsenite addition to active as-prepared enzyme or to a reduced desulfo form yields two different species called A and B, respectively, which show different Mo(V) EPR signals. Both EPR signals show strong hyperfine and quadrupolar couplings with an arsenic nucleus, which suggests that arsenic interacts with molybdenum through an equatorial ligand. X-ray data of single crystals prepared from EPR-active samples show in both inhibited forms that the arsenic atom interacts with the molybdenum ion through an oxygen atom at the catalytic labile site and that the sulfido ligand is no longer present. EPR and X-ray data indicate that the main difference between both species is an equatorial ligand to molybdenum which was determined to be an oxo ligand in species A and a hydroxyl/water ligand in species B. The conclusion that the sulfido ligand is not essential to determine the EPR properties in both Mo-As complexes is achieved through EPR measurements on a substantial number of randomly oriented chemically reduced crystals immediately followed by X-ray studies on one of those crystals. EPR saturation studies show that the electron transfer pathway, which is essential for catalysis, is not modified upon inhibition.

Copper-substituted forms of the wild type and C42A variant of rubredoxin, Thapper, A., Rizzi A. C., Brondino C. D., Wedd A. G., Pais R. J., Maiti B. K., Moura I., Pauleta S. R., and Moura J. J. G. , J Inorg Biochem, Volume 127, p.232-237, (2013)
Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus, Thapper, A., Rivas M. G., Brondino C. D., Ollivier B., Fauque G., Moura I., and Moura J. J. , J Inorg Biochem, Jan, Volume 100, Number 1, p.44-50, (2006) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.

Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Teixeira, M., Fauque G., Moura I., Lespinat P. A., Berlier Y., Prickril B., Peck, H. D. Jr., Xavier A. V., Legall J., and Moura J. J. , Eur J Biochem, Aug 17, Volume 167, Number 1, p.47-58, (1987) AbstractWebsite

The hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from each of three different fractions: soluble periplasmic (wash), soluble cytoplasmic (cell disruption) and membrane-bound (detergent solubilization). Plasma-emission metal analysis detected in all three fractions the presence of iron plus nickel and selenium in equimolecular amounts. These hydrogenases were shown to be composed of two non-identical subunits and were distinct with respect to their spectroscopic properties. The EPR spectra of the native (as isolated) enzymes showed very weak isotropic signals centered around g approximately 2.0 when observed at low temperature (below 20 K). The periplasmic and membrane-bound enzymes also presented additional EPR signals, observable up to 77 K, with g greater than 2.0 and assigned to nickel(III). The periplasmic hydrogenase exhibited EPR features at 2.20, 2.06 and 2.0. The signals observed in the membrane-bound preparations could be decomposed into two sets with g at 2.34, 2.16 and approximately 2.0 (component I) and at 2.33, 2.24, and approximately 2.0 (component II). In the reduced state, after exposure to an H2 atmosphere, all the hydrogenase fractions gave identical EPR spectra. EPR studies, performed at different temperatures and microwave powers, and in samples partially and fully reduced (under hydrogen or dithionite), allowed the identification of two different iron-sulfur centers: center I (2.03, 1.89 and 1.86) detectable below 10 K, and center II (2.06, 1.95 and 1.88) which was easily saturated at low temperatures. Additional EPR signals due to transient nickel species were detected with g greater than 2.0, and a rhombic EPR signal at 77 K developed at g 2.20, 2.16 and 2.0. This EPR signal is reminiscent of the Ni-signal C (g at 2.19, 2.14 and 2.02) observed in intermediate redox states of the well characterized Desulfovibrio gigas hydrogenase (Teixeira et al. (1985) J. Biol. Chem. 260, 8942]. During the course of a redox titration at pH 7.6 using H2 gas as reductant, this signal attained a maximal intensity around -320 mV. Low-temperature studies of samples at redox states where this rhombic signal develops (10 K or lower) revealed the presence of a fast-relaxing complex EPR signal with g at 2.25, 2.22, 2.15, 2.12, 2.10 and broad components at higher field. The soluble hydrogenase fractions did not show a time-dependent activation but the membrane-bound form required such a step in order to express full activity.(ABSTRACT TRUNCATED AT 400 WORDS)

The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mossbauer characterization, Teixeira, M., Moura I., Fauque G., Dervartanian D. V., Legall J., Peck, H. D. Jr., Moura J. J., and Huynh B. H. , Eur J Biochem, Apr 30, Volume 189, Number 2, p.381-6, (1990) AbstractWebsite

The soluble (cytoplasmic plus periplasmic) Ni/Fe-S/Se-containing hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from cells grown in an 57Fe-enriched medium, and its iron-sulfur centers were extensively characterized by Mossbauer and EPR spectroscopies. The data analysis excludes the presence of a [3Fe-4S] center, either in the native (as isolated) or in the hydrogen-reduced states. In the native state, the non-heme iron atoms are arranged as two diamagnetic [4Fe-4S]2+ centers. Upon reduction, these two centers exhibit distinct and unusual Mossbauer spectroscopic parameters. The centers were found to have similar mid-point potentials (approximately -315 mV) as determined by oxidation-reduction titratins followed by EPR.

Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens, Teixeira, L. R., Dantas J. M., Salgueiro C. A., and Cordas C. M. , BBA - Bioenergetics, Volume 1859, p.1132-1137, (2018) Website
Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers, Teixeira, M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck, H. D. Jr., Huynh B. H., and Moura J. J. , Eur J Biochem, Feb 15, Volume 130, Number 3, p.481-4, (1983) AbstractWebsite

Below 30 K, oxidized Desulfovibrio gigas hydrogenase presents an intense electron paramagnetic resonance (EPR) signal centered at g = 2.02, typical of an iron-sulfur center. In addition a rhombic EPR signal, attributed to Ni(III) species, is also observed [LeGall, J., Ljungdahl, P., Moura, I., Peck, H.D., Jr, Xavier, A.V., Moura, J.J.G., Teixeira, M., Huynh, B.H., and DerVartanian, D.V. (1982) Biochem. Biophys. Res. Commun. 106, 610-616; and Cammack, R., Patil, D., Aguirre, R., and Hatchikian, E.C., (1982) FEBS Lett. 142, 289-292]. At higher temperatures (77 K) the iron-sulfur EPR signal is broader and all the EPR features of the rhombic nickel signal can easily be observed. We have now obtained additional information concerning the redox properties of these EPR active centers, using an EPR redox titration method in the presence of dye mediators at pH = 8.5. The mid-point potential was determined to be -70 mV for the Fe,S cluster and -220 mV for the Ni center. Intermediate oxidation states were obtained upon partial reduction with either dithionite or hydrogen. Although upon dithionite reduction the centers are reduced in the order of decreasing mid-point reduction potentials, under a hydrogen atmosphere the nickel center reduces preferentially. This suggests a catalytic involvement of the nickel redox center in the binding of hydrogen. Preliminary Mossbauer studies on Desulfovibrio gigas hydrogenase reveal the presence of a paramagnetic 3 Fe center and two 4 Fe centers. The 3 Fe center is responsible for the g = 2.02 EPR signal but the two 4 Fe centers have been so far undetectable by EPR.

Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Teixeira, M., Moura I., Fauque G., Czechowski M., Berlier Y., Lespinat P. A., Legall J., Xavier A. V., and Moura J. J. , Biochimie, Jan, Volume 68, Number 1, p.75-84, (1986) AbstractWebsite

A soluble hydrogenase from the halophilic sulfate reducing bacterium Desulfovibrio salexigens, strain British Guiana (NCIB 8403) has been purified to apparent homogeneity with a final specific activity of 760 mumoles H2 evolved/min/mg (an overall 180-fold purification with 20% recovery yield). The enzyme is composed of two non-identical subunits of molecular masses 62 and 36 kDa, respectively, and contains approximately 1 Ni, 12-15 Fe and 1 Se atoms/mole. The hydrogenase shows a visible absorption spectrum typical of an iron-sulfur containing protein (A400/A280 = 0.275) and a molar absorbance of 54 mM-1cm-1 at 400 nm. In the native state (as isolated, under aerobic conditions), the enzyme is almost EPR silent at 100 K and below. However, upon reduction under H2 atmosphere a rhombic EPR signal develops at g-values 2.22, 2.16 and around 2.0, which is optimally detected at 40 K. This EPR signal is reminiscent of the nickel signal C (g-values 2.19, 2.16 and 2.02) observed in intermediate redox states of the well characterized D. gigas nickel containing hydrogenase and assigned to nickel by 61 Ni isotopic substitution (J.J.G. Moura, M. Teixeira, I. Moura, A.V. Xavier and J. Le Gall (1984), J. Mol. Cat., 23, 305-314). Upon longer incubation with H2 the "2.22" EPR signal decreases. During the course of a redox titration under H2, this EPR signal attains a maximal intensity around--380 mV. At redox states where this "2.22" signal develops (or at lower redox potentials), low temperature studies (below 10 K) reveals the presence of other EPR species with g-values at 2.23, 2.21, 2.14 with broad components at higher fields. This new signal (fast relaxing) exhibits a different microwave power dependence from that of the "2.22" signal, which readily saturates with microwave power (slow relaxing). Also at low temperature (8 K) typical reduced iron-sulfur EPR signals are concomitantly observed with gmed approximately 1.94. The catalytic properties of the enzyme were also followed by substrate isotopic exchange D2/H+ and H2 production measurements.

Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mossbauer and EPR characterization of the metal centers, Teixeira, M., Moura I., Xavier A. V., Moura J. J., Legall J., Dervartanian D. V., Peck, H. D. Jr., and Huynh B. H. , J Biol Chem, Oct 5, Volume 264, Number 28, p.16435-50, (1989) AbstractWebsite

The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and Mossbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.

Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, Teixeira, M., Moura I., Xavier A. V., Huynh B. H., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Moura J. J. , J Biol Chem, Jul 25, Volume 260, Number 15, p.8942-50, (1985) AbstractWebsite

Desulfovibrio gigas hydrogenase (EC 1.12.2.1) is a complex enzyme containing one nickel, one 3Fe, and two [Fe4S4] clusters (Teixeira, M., Moura, I., Xavier, A. V., Der Vartanian, D. V., LeGall, J., Peck, H. D., Jr., Huynh, B. H., and Moura, J. J. G. (1983) Eur. J. Biochem. 130, 481-484). This hydrogenase belongs to a class of enzymes that are inactive "as isolated" (the so-called "oxygen-stable hydrogenases") and must go through an activation process in order to express full activity. The state of characterization of the active centers of the enzyme as isolated prompted us to do a detailed analysis of the redox patterns, activation profile, and catalytic redox cycle of the enzyme in the presence of either the natural substrate (H2) or chemical reductants. The effect of natural cofactors, as cytochrome C3, was also studied. Special focus was given to the intermediate redox species generated during the catalytic cycle of the enzyme and to the midpoint redox potentials associated. The available information is discussed in terms of a "working hypothesis" for the mechanism of the [NiFe] hydrogenases from sulfate reducing organisms in the context of activation process and catalytic cycle.

Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774), Tavares, P., Ravi N., Moura J. J., Legall J., Huang Y. H., Crouse B. R., Johnson M. K., Huynh B. H., and Moura I. , J Biol Chem, Apr 8, Volume 269, Number 14, p.10504-10, (1994) AbstractWebsite

Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mossbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal at g = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximately 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mossbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mossbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S-->Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.

Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Metalloenzymes of the denitrification pathway, Tavares, P., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, Dec, Volume 100, Number 12, p.2087-100, (2006) AbstractWebsite

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification.

Total synthesis of a simple metalloprotein-desulforedoxin, Tavares, P., Wunderlich J. K., Lloyd S. G., Legall J., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Mar 17, Volume 208, Number 2, p.680-7, (1995) AbstractWebsite

Desulforedoxin is a protein purified from cellular extracts of Desulfovibrio gigas. It is a small (7.9 kDa) dimeric protein that contains a distorted rubredoxin like center (one single iron coordinated by four cysteinyl residues). Due to the simplicity of the polypeptide chain and of the iron center, an attempt was made to chemically produce this protein. A 36 amino acid polypeptide chain was synthesized based on the known sequence of native Desulforedoxin. The iron center was then reconstituted and the biochemical and spectroscopic characteristics of this synthetic protein were investigated. The final product has an equal sequence to the protein purified from D. gigas. The synthetic and natural Dx are very similar, in terms redox potential and spectroscopic properties (UV-Visible, EPR, Mossbauer).