Publications

Export 197 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
E
Electronic and magnetic properties of nickel-substituted rubredoxin: a variable-temperature magnetic circular dichroism study, Kowal, Andrzej T., Zambrano Isabel C., Moura Isabel, Moura Jose J. G., Legall Jean, and Johnson Michael K. , Inorganic Chemistry, 1988/04/01, Volume 27, Number 7, p.1162-1166, (1988) AbstractWebsite
n/a
Encapsulation of flavodoxin in reverse micelles, Andrade, S., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, May 29, Volume 234, Number 3, p.651-4, (1997) AbstractWebsite

The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

EPR and Mossbauer studies of desulforedoxin from Desulfovibrio gigas, Moura, I., Huynh B., Legall J., Xavier A. V., and Munck E. , Ciênc. Biol. (Portugal), Volume 5, p.199-201, (1980) Abstract
n/a
EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, He, S. H., Teixeira M., Legall J., Patil D. S., Moura I., Moura J. J., Dervartanian D. V., Huynh B. H., and Peck, H. D. Jr. , J Biol Chem, Feb 15, Volume 264, Number 5, p.2678-82, (1989) AbstractWebsite

The periplasmic hydrogenase containing equivalent amounts of nickel and selenium plus non-heme iron [NiFeSe) hydrogenase) has been purified from cells of the sulfate reducing bacterium Desulfovibrio baculatus (DSM 1748) grown on a lactate/sulfate medium containing natural Se isotopes and the nuclear isotope, 77Se. Both the 77Se-enriched and unenriched hydrogenases were shown to be free of other hydrogenases and characterized with regard to their Se contents. EPR studies of the reduced nickel signal generated by redox titrations of the enriched and unenriched (NiFeSe) hydrogenases demonstrated that the gx = 2.23 and gy = 2.17 resonances are appreciably broadened by the spin of the 77Se nucleus (I = 1/2). This observation demonstrates unambiguously that the unpaired electron is shared by the Ni and Se atoms and that Se serves as a ligand to the nickel redox center of the (NiFeSe) hydrogenase.

EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris, Patil, D. S., Moura J. J., He S. H., Teixeira M., Prickril B. C., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Huynh B. H. , J Biol Chem, Dec 15, Volume 263, Number 35, p.18732-8, (1988) AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) belongs to the category of [Fe] hydrogenase which contains only iron-sulfur clusters as its prosthetic groups. Amino acid analyses were performed on the purified D. vulgaris hydrogenase. The amino acid composition obtained compared very well with the result derived from the nucleotide sequence of the structural gene (Voordouw, G., Brenner, S. (1985) Eur. J. Biochem. 148, 515-520). Detailed EPR reductive titration studies on the D. vulgaris hydrogenase were performed to characterize the metal centers in this hydrogenase. In addition to the three previously observed EPR signals (namely, the "isotropic" 2.02 signal, the rhombic 2.10 signal, and the complex signal of the reduced enzyme), a rhombic signal with resonances at the g-values of 2.06, 1.96, and 1.89 (the rhombic 2.06 signal) was detected when the samples were poised at potentials between 0 and -250 mV (with respect to normal hydrogen electrode). The midpoint redox potentials for each of the four EPR-active species were determined, and the characteristics of each EPR signal are described. Both the rhombic 2.10 and 2.06 signals exhibit spectral properties that are distinct from a ferredoxin-type [4Fe-4S] cluster and are proposed to originate from the same H2-binding center but in two different conformations. The complex signal of the reduced hydrogenase has been shown to represent two spin-spin interacting ferredoxin-type [4Fe-4S]1+ clusters (Grande, H. J., Dunham, W. R., Averill, B., Van Dijk, C., and Sands, R. H. (1983) Eur. J. Biochem. 136, 201-207). The titration data indicated a strong cooperative effect between these two clusters during their reduction. In an effort to accurately estimate the number of iron atoms/molecule of hydrogenase, plasma emission and chemical methods were used to determine the iron contents in the samples; and four different methods, including amino acid analysis, were used for protein determination. The resulting iron stoichiometries were found to be method-dependent and vary over a wide range (+/- 20%). The uncertainties involved in the determination of iron stoichiometry are discussed.

ESR studies of cytochrome c3 from Desulfovibrio desulfuricans strain Norway 4: Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur, Cammack, R., Fauque G., Moura J. J. G., and Legall J. , Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Volume 784, Number 1, p.68-74, (1984) AbstractWebsite
n/a
Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies, Palma, P. N., Moura I., Legall J., Van Beeumen J., Wampler J. E., and Moura J. J. , Biochemistry, May 31, Volume 33, Number 21, p.6394-407, (1994) AbstractWebsite

Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical ternary complex, formed between one molecule of Desulfovibrio salexigens flavodoxin and two molecules of cytochrome c3, is proposed. These molecular models of the complexes were constructed on the basis of complementarity of Coulombic electrostatic surface potentials, using the available X-ray structures of the isolated proteins and, when required, model structures (D. salexigens flavodoxin and Desulfovibrio desulfuricans ATCC 27774 cytochrome c3) predicted by homology modeling.

Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies, Huynh, B. H., Moura J. J., Moura I., Kent T. A., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Apr 25, Volume 255, Number 8, p.3242-4, (1980) AbstractWebsite

The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with Mossbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and Mossbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The Mossbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796).

Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, Kruger, H. J., Huynh B. H., Ljungdahl P. O., Xavier A. V., Dervartanian D. V., Moura I., Peck, H. D. Jr., Teixeira M., Moura J. J., and Legall J. , J Biol Chem, Dec 25, Volume 257, Number 24, p.14620-3, (1982) AbstractWebsite

Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and Mossbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the Mossbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the Mossbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and Mossbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.

Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus, Eidsness, M. K., Scott R. A., Prickril B. C., Dervartanian D. V., Legall J., Moura I., Moura J. J., and Peck, H. D. Jr. , Proc Natl Acad Sci U S A, Jan, Volume 86, Number 1, p.147-51, (1989) AbstractWebsite

Ni and Se x-ray absorption spectroscopic studies of the [NiFeSe]hydrogenases from Desulfovibrio baculatus are described. The Ni site geometry is pseudo-octahedral with a coordinating ligand composition of 3-4 (N,O) at 2.06 A, 1-2 (S,Cl) at 2.17 A, and 1 Se at 2.44 A. The Se coordination environment consists of 1 C at 2.0 A and a heavy scatterer M (M = Ni or Fe) at approximately 2.4 A. These results are interpreted in terms of a selenocysteine residue coordinated to the Ni site. The possible role of the Ni-Se site in the catalytic activation of H2 is discussed.

Evidence for the formation of a cobalt-iron-sulfur (CoFe3S4) cluster in Desulfovibrio gigas ferredoxin II, Moura, Isabel, Moura Jose J. G., Munck Eckard, Papaefthymiou Vasilios, and Legall Jean , Journal of the American Chemical Society, 1986/01/01, Volume 108, Number 2, p.349-351, (1986) AbstractWebsite
n/a
Evidence for the formation of a ZnFe3S4 cluster in Desulfovibrio gigas ferredoxin II, Surerus, Kristene K., Munck Eckard, Moura Isabel, Moura Jose J. G., and Legall Jean , Journal of the American Chemical Society, 1987/06/01, Volume 109, Number 12, p.3805-3807, (1987) AbstractWebsite
n/a
Expression of Desulfovibrio gigas desulforedoxin in Escherichia coli. Purification and characterization of mixed metal isoforms, Czaja, C., Litwiller R., Tomlinson A. J., Naylor S., Tavares P., Legall J., Moura J. J., Moura I., and Rusnak F. , J Biol Chem, Sep 1, Volume 270, Number 35, p.20273-7, (1995) AbstractWebsite

The dsr gene from Desulfovibrio gigas encoding the nonheme iron protein desulforedoxin was cloned using the polymerase chain reaction, expressed in Escherichia coli, and purified to homogeneity. The physical and spectroscopic properties of the recombinant protein resemble those observed for the native protein isolated from D. gigas. These include an alpha 2 tertiary structure, the presence of bound iron, and absorbance maxima at 370 and 506 nm in the UV/visible spectrum due to ligand-to-iron charge transfer bands. Low temperature electron paramagnetic resonance studies confirm the presence of a high-spin ferric ion with g values of 7.7, 5.7, 4.1, and 1.8. Interestingly, E. coli produced two forms of desulforedoxin containing iron. One form was identified as a dimer with the metal-binding sites of both subunits occupied by iron while the second form contained equivalent amounts of iron and zinc and represents a dimer with one subunit occupied by iron and the second with zinc.

F
Ferredoxin from Methanosarcina barkeri: evidence for the presence of a three-iron center, Moura, I., Moura J. J., Huynh B. H., Santos H., Legall J., and Xavier A. V. , Eur J Biochem, Aug, Volume 126, Number 1, p.95-8, (1982) AbstractWebsite

Methanosarcina barkeri ferredoxin was purified and characterized by electron paramagnetic resonance (EPR) and Mossbauer spectroscopy. The purification procedure included chromatographic steps on DEAE-cellulose and gel filtration. The isolated protein is unstable under aerobic conditions. The ferredoxin exhibits charge transfer bands at 283 nm and 405 nm with an absorption ratio A405/A283 = 0.73. Its molecular weight has been estimated to be 20000-22000 by gel filtration chromatography. The native ferredoxin exhibits an intense EPR signal at g = 2.02 and only a very weak g = 1.94 signal develops upon reduction with dithionite. The Mossbauer spectra of the reduced protein are characteristic of a [3Fe-3S] center. The combined EPR and Mossbauer studies show that M. barkeri ferredoxin contains only [3Fe-3S] clusters, similar to Azotobacter vinelandii Fd[Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H. & Munck, M. (1980) J. Biol. Chem. 255, 1793-1796], Desulfovibrio gigas FdII [Huynh, B.H., Moura, J.J.G., Moura, I., Kent, T.A., LeGall, J., Xavier, A.V. & Munck, E. (1980) J. Biol. Chem. 255, 3242-3244] and mitochondrial beef heart aconitase [Kent, T.A., Dreyer, J.-L., Kennedy, M.C., Huynh, B.H., Emptage, M.H., Beinert, H. & Munck, E. (1982) Proc. Natl Acad. Sci. USA, 79, 1096-1100].

Flavodoxin and rubredoxin from Desulphovibrio salexigens, Moura, I., Moura J. J., Bruschi M., and Legall J. , Biochim Biophys Acta, Jun 10, Volume 591, Number 1, p.1-8, (1980) AbstractWebsite

A flavodoxin and a rubredoxin have been isolated from the sulfate-reducing bacterium Desulphovibrio salexigens (strain British Guiana, NICB 8403). Their amino acid composition and spectral characteristics did not differ markedly from the homologous proteins presented in other Desulphovibrio spp. Flavodoxin was shown to be active in the electron transport of the sulfite reductase system.

Fluorescence anisotropy of fluorescein varies according to pH: lessons for binding studies, Castro, N. S. S., Laia C. A. T., Moura I., and Carepo M. S. , J Photochem Photobiol A: Chemistry, Volume 372, p.59-62, (2019)
Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: Isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum), Costa, C., Teixeira M., Legall J., Moura J. J. G., and Moura I. , Journal of Biological Inorganic Chemistry, Apr, Volume 2, Number 2, p.198-208, (1997) AbstractWebsite

An air-stable formate dehydrogenase, an enzyme that catalyzes the oxidation of formate to CO2, was purified from a sulfate-reducing organism, Desulfovibrio desulfuricans ATCC 27774. The enzyme has a molecular mass of approximately 150 kDa (three different subunits: 88, 29 and 16 kDa) and contains three types of redox-active centers: four c-type hemes, nonheme iron arranged as two [4Fe-4S](2+/1+) centers and a molybdenum-pterin site. Selenium was also chemically detected. The enzyme specific activity is 78 units per mg of protein. Mo(V) EPR signals were observed in the native, reduced and formate-reacted states. EPR signals related to the presence of multiple low-spin hemes were also observed in the oxidized state. Upon reduction, an examination of the EPR data under appropriate conditions distinguishes two types of iron-sulfur centers, an [Fe-S] center I (g(max)=2.050, g(med)=1.947, g(min)=1.896) and an [Fe-S] center II (g(max)=2.071, g(med)=1.926, g(min)=1.865). Mossbauer spectroscopy confirmed the presence of four hemes in the low-spin state. The presence of two [4Fe-4S](2+/1+) centers was confirmed, one of these displaying very small hyperfine coupling constants in the +1 oxidation state. The midpoint redox potentials of the enzyme metal centers were also estimated.

Functional necessity and physicochemical characteristics of the 2Fe-2S cluster in mammalian ferrochelatase, Lloyd, S. G., Franco R., Moura J. J. G., Moura I., Ferreira G. C., and Huynh B. H. , Journal of the American Chemical Society, Oct 16, Volume 118, Number 41, p.9892-9900, (1996) AbstractWebsite

The recently discovered [2Fe-2S] cluster in mouse liver ferrochelatase has been characterized using UV-vis, EPR, and Mossbauer spectroscopic techniques. Studies are reported here for the recombinant protein purified from an overproducing transformed Escherichia coli strain. A positive correlation is observed between the presence of the [2Fe-2S] cluster and the enzymatic specific activity and demonstrates the necessity of this cofactor. Chemical analysis revealed that the preparations contained up to 1.3 Fe/molecule and indicated a 1:1 stoichiometry between Fe and acid-labile sulfide. The [2Fe-2S] cluster in the as-isolated ferrochelatase exhibits a UV-vis spectrum indicative of a [2Fe-2S](2+) cluster and is EPR-silent. The 8 T Mossbauer spectrum of the Fe-57-enriched as-isolated protein is well simulated by parameters Delta E(Q) = 0.69 +/- 0.03 mm/s and delta = 0.28 +/- 0.02 mm/s and confirms the presence of a diamagnetic ground state. Upon reduction with sodium dithionite, ferrochelatase shows a near-axial EPR spectrum with g-values of 2.00, 1.93, and 1.91, consistent with a S = 1/2 mixed valent Fe3+-Fe2+ cluster. The Orbach temperature dependence of the EPR line widths was used to provide an estimate of the exchange coupling J, which was determined to be on the order of 500-650 cm(-1) (+JS(1) . S-2 model). Redox titrations monitored by UV-vis and EPR spectroscopy revealed midpoint potentials of -390 +/- 10 and -405 +/- 10 mV, respectively. Mossbauer spectra of the sodium dithionite-reduced Fe-57-enriched ferrochelatase collected at 4.2 K in the presence of magnetic fields of 60 mT and 8 T strengths were analyzed in the mixed-valent S = 1/2 ground state. Parameters for the ferric site are Delta E(Q) = 1.2 +/- 0.2 mm/s and delta = 0.28 +/- 0.03 mm/s, with somewhat anisotropic hyperfine splittings; for the ferrous site, Delta E(Q) = 3.3 +/- 0.1 mm/s and delta = 0.67 +/- 0.04 mm/s with anisotropic hyperfine splittings characteristic of high-spin ferrous ion. The similarities and differences with other characterized [2Fe-2S](+) cluster-containing proteins are discussed.

The fundamental importance of basic science: examples of high-impact discoveries from an international Chemistry Network, Lopes, L. G. F., Sadler P. J., Bernardes-Génisson V., Moura J. J. G., Chauvin R., Bernhardt P. V., and Sousa E. H. S. , Quim Nova, Volume 43, p.1176-1189, (2020)
H
Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mossbauer and EPR characterization of the heme groups, Costa, C., Moura J. J., Moura I., Liu M. Y., Peck, H. D. Jr., Legall J., Wang Y. N., and Huynh B. H. , J Biol Chem, Aug 25, Volume 265, Number 24, p.14382-8, (1990) AbstractWebsite

Mossbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. Mossbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the Mossbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.

Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins, Saint-Martin, P., Lespinat P. A., Fauque G., Berlier Y., Legall J., Moura I., Teixeira M., Xavier A. V., and Moura J. J. , Proc Natl Acad Sci U S A, Dec, Volume 85, Number 24, p.9378-80, (1988) AbstractWebsite

The nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide.

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 complex of sulfate-reducing bacteria, Stewart, D. E., Legall J., Moura I., Moura J. J., Peck, H. D. Jr., Xavier A. V., Weiner P. K., and Wampler J. E. , Biochemistry, Apr 5, Volume 27, Number 7, p.2444-50, (1988) AbstractWebsite

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 electron-transfer complex from the sulfate-reducing bacterium Desulfovibrio vulgaris has been constructed by using interactive computer graphics based on electrostatic potential field calculations and previous NMR experiments. Features of the proposed complex are (1) van der Waals contact between the flavin mononucleotide prosthetic group of flavodoxin and one heme of the cytochrome, (2) unique complementarity of electrostatic fields between the region surrounding this heme and the region surrounding the exposed portion of the flavin mononucleotide group of flavodoxin, and (3) no steric interferences between the two polypeptide chains in the complex. This complex is consistent with all structural and spectroscopic data available.

I
Identification of three classes of hydrogenase in the genus, Desulfovibrio, Prickril, Benet C., He Shao-Hua, Li Ching, Menon Nanda, Choi Eui-Sung, Przybyla Alan E., DerVartanian Daniel V., Peck Jr Harry D., Fauque Guy, Legall Jean, Teixeira Miguel, Moura Isabel, Moura Jose J. G., Patil Daulat, and Huynh Boi H. , Biochemical and Biophysical Research Communications, Volume 149, Number 2, p.369-377, (1987) AbstractWebsite
n/a
Immunocytochemical localization of APS reductase and bisulfite reductase in three <i>Desulfovibrio</i> species, Kremer, D. R., Veenhuis M., Fauque G., Peck H. D., Legall J., Lampreia J., Moura J. J. G., and Hansen T. A. , Archives of Microbiology, Volume 150, Number 3, p.296-301, (1988) AbstractWebsite

The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.

An improved clean sonoreactor-based method for protein identification by mass spectrometry-based techniques, Santos, H. M., Mota Cristiano, Lodeiro C., Moura Isabel, Isaac Issa, and Capelo J. L. , Talanta, Dec 15, Volume 77, Number 2, p.870-875, (2008) AbstractWebsite

A new clean fast (8 min) method for in-solution protein digestion Without detergent or urea for protein identification by peptide mass fingerprint and mass spectrometry-based techniques is Proposed. The new method avoids the use of time consuming desalting procedures entailing the following four steps done under the effect of an ultrasonic field provided by a sonoreactor: denaturation (1 min) in a mixed Solution of water:acetonitrile 1/1 (v/v): protein reduction (1 min); protein alkylation (1 min); and protein digestion (5 min). Five Proteins with masses comprised between 14.4 kDa and 97 kDa and the protein splitsoret cytochrome c from D. desulfuricans ATCC27774, Were Successfully identified with this procedure. No differences were found in the sequence coverage or in the number of peptides matched when the new clean method was compared to another one using urea. Twofold better signal-to-noise ratios were obtained in the MALDI spectra from protein samples prepared with the new method when comparing it with a method using urea. The new digestion method avoids the need to remove salt content and increases throughput (six samples at once) while reducing sample loss and contamination from sample handling. (C) 2008 Elsevier B.V. All rights reserved.