Publications

Export 41 results:
Sort by: Author Title Type [ Year  (Asc)]
1980
Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies, Huynh, B. H., Moura J. J., Moura I., Kent T. A., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Apr 25, Volume 255, Number 8, p.3242-4, (1980) AbstractWebsite

The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with Mossbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and Mossbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The Mossbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796).

1982
Conversion of [3 Fe-3 S] into [4 Fe-4 S] clusters in a Desulfovibrio gigas ferredoxin and isotopic labeling of iron—sulfur cluster subsites, Kent, T. A., Moura I., Moura J. J. G., Lipscomb J. D., Huynh B. H., Legall J., Xavier A. V., and Münck E. , Febs Letters, Volume 138, Number 1, p.55-58, (1982) AbstractWebsite
n/a
Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, Kruger, H. J., Huynh B. H., Ljungdahl P. O., Xavier A. V., Dervartanian D. V., Moura I., Peck, H. D. Jr., Teixeira M., Moura J. J., and Legall J. , J Biol Chem, Dec 25, Volume 257, Number 24, p.14620-3, (1982) AbstractWebsite

Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and Mossbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the Mossbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the Mossbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and Mossbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.

Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Mossbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II, Moura, J. J., Moura I., Kent T. A., Lipscomb J. D., Huynh B. H., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Jun 10, Volume 257, Number 11, p.6259-67, (1982) AbstractWebsite
n/a
Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Moura, J. J., Moura I., Huynh B. H., Kruger H. J., Teixeira M., DuVarney R. C., Dervartanian D. V., Xavier A. V., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Oct 29, Volume 108, Number 4, p.1388-93, (1982) AbstractWebsite
n/a
1983
Mössbauer and EPR evidence for nickel and 3Fe cluster in the hydrogenases of D. desulfuricans and D. gigas, Huynh, B. H., Legall J., Dervartanian D. V., Peck Jr H. D., Krüger H. J., Moura I., Moura J. J. G., and Xavier A. V. , Inorganica Chimica Acta, Volume 79, p.136, (1983) AbstractWebsite
n/a
1987
Proton NMR spectra of rubredoxins: new resonances assignable to .alpha.-CH and .beta.-CH2 hydrogens of cysteinate ligands to iron(II), Werth, Mark T., Kurtz Donald M., Moura Isabel, and Legall Jean , Journal of the American Chemical Society, 1987/01/01, Volume 109, Number 1, p.273-275, (1987) AbstractWebsite
n/a
1988
Immunocytochemical localization of APS reductase and bisulfite reductase in three <i>Desulfovibrio</i> species, Kremer, D. R., Veenhuis M., Fauque G., Peck H. D., Legall J., Lampreia J., Moura J. J. G., and Hansen T. A. , Archives of Microbiology, Volume 150, Number 3, p.296-301, (1988) AbstractWebsite

The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.

Electronic and magnetic properties of nickel-substituted rubredoxin: a variable-temperature magnetic circular dichroism study, Kowal, Andrzej T., Zambrano Isabel C., Moura Isabel, Moura Jose J. G., Legall Jean, and Johnson Michael K. , Inorganic Chemistry, 1988/04/01, Volume 27, Number 7, p.1162-1166, (1988) AbstractWebsite
n/a
1990
Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands, Fauque, G., Lino A. R., Czechowski M., Kang L., Dervartanian D. V., Moura J. J., Legall J., and Moura I. , Biochim Biophys Acta, Aug 1, Volume 1040, Number 1, p.112-8, (1990) AbstractWebsite

A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).

1995
Metabolic adaptations induced by long-term fasting in quails, Sartori, D. R., Migliorini R. H., Veiga J. A., Moura J. L., Kettelhut I. C., and Linder C. , Comp Biochem Physiol A Physiol, Jul, Volume 111, Number 3, p.487-93, (1995) AbstractWebsite

After up to 21 days without food, adult male quails (Coturnix coturnix japonica) lost about 45% of the initial body weight (100-150 g). As in naturally fast-adapted and larger birds, three phases were identified during prolonged fasting in quails. Phase I lasted 2-3 days and was characterized by a rapid decrease in the rate of body weight loss and high fat mobilization. Phase II was longer and characterized by a slow and steady decline in the rates of body weight loss and of nitrogen excretion. The third (critical) period was marked by an abrupt increase in the rates of body weight loss and of nitrogen excretion. Despite their small size, the duration of phase II in quails was relatively long, a clear advantage for the study of the relationships between the several metabolic events that occur during this crucial adaptative period. Also, the beginning of phase III could be precisely determined. Changes in blood glucose, plasma FFA and triacylglycerols levels, as well as in liver and carcass lipid content were similar to those found in other species of birds. Therefore, quails seem to be a suitable model to investigate the biochemical mechanisms involved in the metabolic adjustments to prolonged food deprivation in non fasting-adapted birds.

1997
Structure and function of molybdopterin containing enzymes, Romao, M. J., Knablein J., Huber R., and Moura J. J. , Prog Biophys Mol Biol, Volume 68, Number 2-3, p.121-44, (1997) AbstractWebsite

Molybdopterin containing enzymes are present in a wide range of living systems and have been known for several decades. However, only in the past two years have the first crystal structures been reported for this type of enzyme. This has represented a major breakthrough in this field. The enzymes share common structural features, but reveal different polypeptide folding topologies. In this review we give an account of the related spectroscopic information and the crystallographic results, with emphasis on structure-function studies.

Conversion of desulforedoxin into a rubredoxin center, Yu, L., Kennedy M., Czaja C., Tavares P., Moura J. J., Moura I., and Rusnak F. , Biochem Biophys Res Commun, Feb 24, Volume 231, Number 3, p.679-82, (1997) AbstractWebsite

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)4 center. However, the spectroscopic properties of the center in desulforedoxin differ from rubredoxin. These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated highspin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin.

Encapsulation of flavodoxin in reverse micelles, Andrade, S., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, May 29, Volume 234, Number 3, p.651-4, (1997) AbstractWebsite

The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

1998
Metal binding to the tetrathiolate motif of desulforedoxin and related polypeptides, Kennedy, M., Yu L., Lima M. J., Ascenso C. S., Czaja C., Moura I., Moura J. J. G., and Rusnak F. , Journal of Biological Inorganic Chemistry, Dec, Volume 3, Number 6, p.643-649, (1998) AbstractWebsite

Desulforedoxin and the N-terminus of desulfoferrodoxin share a 36 amino acid domain containing a (Cys-S)(4) metal binding site. Recombinant forms of desulforedoxin, an N-terminal fragment of desulfoferrodoxin, and two desulforedoxin mutant proteins were reconstituted with Fe3+ Cd2+, and Zn2+ and relative metal ion affinities assessed by proton titrations. Protons compete with metal for protein ligands, a process that can be followed by monitoring the optical spectrum of the metal-protein complex as a function of pH. For all polypeptides, Fe3+ bound with the highest affinity, whereas the affinity of Zn2+ was greater than Cd2+ in desulforedoxin and the N-terminal fragment of desulfoferrodoxin, but this order was reversed in desulforedoxin mutant proteins. Metal binding in both mutants was significantly impaired. Furthermore, the Fe3+ complex of both mutants underwent a time-dependent bleaching process which coincided with increased reactivity of cysteine residues to Ellman's reagent and concomitant metal dissociation. It is hypothesized that this results from an autoredox reaction in which Fe3+ is reduced to Fe2+ with attendant oxidation of ligand thiols.

The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Oxovanadium(IV) complexes of the dipeptides glycyl-L-aspartic acid, L-aspartylglycine and related ligands; a spectroscopic and potentiometric study, Pessoa, J. C., Gajda T., Gillard R. D., Kiss T., Luz S. M., Moura J. J. G., Tomaz I., Telo J. P., and Torok I. , Journal of the Chemical Society-Dalton Transactions, Nov 7, Number 21, p.3587-3600, (1998) AbstractWebsite

The equilibria in the systems VO2+ + L (L = Gly-L-Asp, L-Asp-Gly, N-acetyl-L-aspartic acid or succinic acid) have been studied at 25 degrees C and 0.2 mol dm(3) K(CI) medium by a combination of potentiometric and spectroscopic methods (ESR, circular dichroism and visible absorption). Formation constants were calculated from pH-metric data with total oxovanadium(Iv) concentrations of(0.6-4) x 10(-3) mol dm(-3) and ligand-to-metal (L:M) ratios of 2-8 (AspGly) or 4-15: 1 (other systems). The position of the Asp residue in the peptide chain affects the co-ordination mode of the ligands: while in the GlyAsp system bis complexes start to form at pH less than 2, for AspGly only 1 : 1 complexes form, with relatively high CD signal. The co-ordination behaviour of N-acetyl-L-aspartic and succinic acids is similar. The results of potentiometric and spectroscopic methods are self consistent. Isomeric structures are discussed for each stoichiometry proposed and the results compared with those for L-aspartic acid and dipeptides with non-coordinating side chains.

The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

1999
The structure of an electron transfer complex containing a cytochrome c and a peroxidase, Pettigrew, G. W., Prazeres S., Costa C., Palma N., Krippahl L., Moura I., and Moura J. J. , J Biol Chem, Apr 16, Volume 274, Number 16, p.11383-9, (1999) AbstractWebsite

Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility.

Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli, Pereira, A. S., Tavares P., Krebs C., Huynh B. H., Rusnak F., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Jun 24, Volume 260, Number 1, p.209-15, (1999) AbstractWebsite

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.

2000
BiGGER: a new (soft) docking algorithm for predicting protein interactions, Palma, P. N., Krippahl L., Wampler J. E., and Moura J. J. , Proteins, Jun 1, Volume 39, Number 4, p.372-84, (2000) AbstractWebsite

A new computationally efficient and automated "soft docking" algorithm is described to assist the prediction of the mode of binding between two proteins, using the three-dimensional structures of the unbound molecules. The method is implemented in a software package called BiGGER (Bimolecular Complex Generation with Global Evaluation and Ranking) and works in two sequential steps: first, the complete 6-dimensional binding spaces of both molecules is systematically searched. A population of candidate protein-protein docked geometries is thus generated and selected on the basis of the geometric complementarity and amino acid pairwise affinities between the two molecular surfaces. Most of the conformational changes observed during protein association are treated in an implicit way and test results are equally satisfactory, regardless of starting from the bound or the unbound forms of known structures of the interacting proteins. In contrast to other methods, the entire molecular surfaces are searched during the simulation, using absolutely no additional information regarding the binding sites. In a second step, an interaction scoring function is used to rank the putative docked structures. The function incorporates interaction terms that are thought to be relevant to the stabilization of protein complexes. These include: geometric complementarity of the surfaces, explicit electrostatic interactions, desolvation energy, and pairwise propensities of the amino acid side chains to contact across the molecular interface. The relative functional contribution of each of these interaction terms to the global scoring function has been empirically adjusted through a neural network optimizer using a learning set of 25 protein-protein complexes of known crystallographic structures. In 22 out of 25 protein-protein complexes tested, near-native docked geometries were found with C(alpha) RMS deviations < or =4.0 A from the experimental structures, of which 14 were found within the 20 top ranking solutions. The program works on widely available personal computers and takes 2 to 8 hours of CPU time to run any of the docking tests herein presented. Finally, the value and limitations of the method for the study of macromolecular interactions, not yet revealed by experimental techniques, are discussed.

Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553-ferredoxin complex, Morelli, X., Dolla A., Czjzek M., Palma P. N., Blasco F., Krippahl L., Moura J. J., and Guerlesquin F. , Biochemistry, Mar 14, Volume 39, Number 10, p.2530-7, (2000) AbstractWebsite

The combination of docking algorithms with NMR data has been developed extensively for the studies of protein-ligand interactions. However, to extend this development for the studies of protein-protein interactions, the intermolecular NOE constraints, which are needed, are more difficult to access. In the present work, we describe a new approach that combines an ab initio docking calculation and the mapping of an interaction site using chemical shift variation analysis. The cytochrome c553-ferredoxin complex is used as a model of numerous electron-transfer complexes. The 15N-labeling of both molecules has been obtained, and the mapping of the interacting site on each partner, respectively, has been done using HSQC experiments. 1H and 15N chemical shift analysis defines the area of both molecules involved in the recognition interface. Models of the complex were generated by an ab initio docking software, the BiGGER program (bimolecular complex generation with global evaluation and ranking). This program generates a population of protein-protein docked geometries ranked by a scoring function, combining relevant stabilization parameters such as geometric complementarity surfaces, electrostatic interactions, desolvation energy, and pairwise affinities of amino acid side chains. We have implemented a new module that includes experimental input (here, NMR mapping of the interacting site) as a filter to select the accurate models. Final structures were energy minimized using the X-PLOR software and then analyzed. The best solution has an interface area (1037.4 A2) falling close to the range of generally observed recognition interfaces, with a distance of 10.0 A between the redox centers.

Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase, Jovanovic, T., Ascenso C., Hazlett K. R., Sikkink R., Krebs C., Litwiller R., Benson L. M., Moura I., Moura J. J., Radolf J. D., Huynh B. H., Naylor S., and Rusnak F. , J Biol Chem, Sep 15, Volume 275, Number 37, p.28439-48, (2000) AbstractWebsite

Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mossbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.

Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): insights into isoniazid activation, Wengenack, N. L., Lopes H., Kennedy M. J., Tavares P., Pereira A. S., Moura I., Moura J. J., and Rusnak F. , Biochemistry, Sep 19, Volume 39, Number 37, p.11508-13, (2000) AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG.