Publications

Export 99 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Costa, C., Moura J. J., Moura I., Wang Y., and Huynh B. H. , J Biol Chem, Sep 20, Volume 271, Number 38, p.23191-6, (1996) AbstractWebsite

The dissimilatory nitrite reductase from Desulfovibrio desulfuricans ATCC 27774 catalyzes the reduction of nitrite to ammonia. Previous spectroscopic investigation revealed that it is a hexaheme cytochrome containing one high spin ferric heme and five low spin ferric hemes in the oxidized enzyme. The current study uses the high resolution of Mossbauer spectroscopy to obtain redox properties of the six heme groups. Correlating the Mossbauer findings with the EPR data reveals the pairwise spin-spin coupling among four of the heme groups. The other two hemes are found to be magnetically isolated. Reduction with dithionite and reaction with CO further indicate that only the high spin heme is capable of binding small exogenous ligands. These results confirm our previous finding that Desulfovibrio desulfuricans nitrite reductase contains six heme groups and that the high spin ferric heme is the substrate and inhibitor binding site.

Redox properties of the diheme cytochrome c4 from Azotobacter vinelandii and characterisation of the two hemes by NMR, MCD and EPR spectroscopy, Gadsby, P. M., Hartshorn R. T., Moura J. J., Sinclair-Day J. D., Sykes A. G., and Thomson A. J. , Biochim Biophys Acta, Jan 19, Volume 994, Number 1, p.37-46, (1989) AbstractWebsite

From biphasic stopped-flow kinetic studies it has been established that the two heme centres of cytochrome c4 from Azotobacter vinelandii undergo redox change with [Co(terpy)2]3+/2+ (260 mV) at different rates. Rate constants for oxidation and reduction at pH 7.5 give reduction potentials for the two heme centres in agreement with previous values from spectrophotometric titrations (263 and 317 mV). From NMR studies on the fully reduced protein two sharp methyl methionine resonances are observed at -3.16 and -3.60 ppm, consistent with axial methionine coordination. On titration with [Fe(CN)6]3- the -3.16 ppm resonance is the first to disappear, and is assigned to the less positive reduction potential. Line-broadening effects are observed on partial oxidation, which are dominated by intermolecular processes in an intermediate time-range exchange process. The hemes of the oxidised protein are distinguishable by EPR g-values of 3.64 and 3.22. The former is of interest because it is at an unusually low field for histidine/methionine coordination, and has an asymmetric or ramp shape. The latter assigned to the low potential heme is similar to that of a cytochrome c551. The MCD spectra of the fully oxidised protein are typical of low-spin Fe(III) heme centres, with a negative peak at 710 nm characteristic of methionine coordination, and an NIR peak at 1900 nm characteristic of histidine/methionine (axial) coordination. Of the four histidines per molecule only two undergo diethyl pyrocarbonate (DEPC) modification.

Reductive activation of aerobically purified Desulfovibrio vulgaris hydrogenase: Mossbauer characterization of the catalytic H cluster, Huynh, B. H., Tavares P., Pereira A. S., Moura I., and Moura J. J. G. , Biochemistry and Physiology of Anaerobic Bacteria, 2003, p.35-45, (2003) AbstractWebsite
n/a
Resonance Raman spectra of rubredoxin, desulforedoxin, and the synthetic analog Fe(S2-o-xyl)2: conformational effects, Yachandra, Vittal K., Hare Jeffrey, Moura I., and Spiro Thomas G. , Journal of the American Chemical Society, 1983/10/01, Volume 105, Number 21, p.6455-6462, (1983) AbstractWebsite
n/a
Resonance Raman spectra of three-iron centers in ferredoxins from Desulfovibrio gigas, Johnson, M. K., Hare J. W., Spiro T. G., Moura J. J., Xavier A. V., and Legall J. , J Biol Chem, Oct 10, Volume 256, Number 19, p.9806-8, (1981) AbstractWebsite

The resonance Raman spectra of ferredoxins (Fd) I and II from Desulfovibrio gigas are reported using 4579 A Ar+ laser excitation. The (3Fe-3S) center in Fd II has a characteristic resonance Raman spectrum, readily distinguishable from those of (2Fe-2S) or (4Fe-4S) clusters. Reduction of Fd II produces a marked alteration in the resonance Raman spectrum. Fd I is shown to contain both (3Fe-3S) and (4Fe-4S) Fd-type clusters. The results illustrate the potential of resonance Raman spectroscopy in Fe-S cluster identification, even in cases where more than one cluster type is present.

Resonance Raman studies of nickel tetrathiolates and nickel-substituted rubredoxins and desulforedoxin, Huang, Yun Hua, Moura Isabel, Moura Jose J. G., Legall Jean, Park Jae Bum, Adams Michael W. W., and Johnson Michael K. , Inorganic Chemistry, 1993/02/01, Volume 32, Number 4, p.406-412, (1993) AbstractWebsite
n/a
Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur, Brown, K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J. J., Moura I., Tegoni M., and Cambillau C. , J Biol Chem, Dec 29, Volume 275, Number 52, p.41133-6, (2000) AbstractWebsite

Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.

Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue, Aureliano, M., Henao F., Tiago T., Duarte R. O., Moura J. J., Baruah B., and Crans D. C. , Inorg Chem, Jul 7, Volume 47, Number 13, p.5677-84, (2008) AbstractWebsite

The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.

SERR spectroelectrochemical study of cytochrome cd1 nitrite reductase co-immobilized with physiological redox partner cytochrome c552 on biocompatible metal electrodes, Silveira, C. M., Quintas P. O., Moura I., Moura J. J. G., Hildebrandt P., Almeida M. G., and Todorovic S. , Plos One, Volume 10, p.e0129940, (2015)
Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774), Tavares, P., Ravi N., Moura J. J., Legall J., Huang Y. H., Crouse B. R., Johnson M. K., Huynh B. H., and Moura I. , J Biol Chem, Apr 8, Volume 269, Number 14, p.10504-10, (1994) AbstractWebsite

Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mossbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal at g = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximately 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mossbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mossbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S-->Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.

Spectroscopic studies of the oxidation-reduction properties of three forms of ferredoxin from Desulphovibrio gigas, Cammack, R., Rao K. K., Hall D. O., Moura J. J., Xavier A. V., Bruschi M., Legall J., Deville A., and Gayda J. P. , Biochim Biophys Acta, Feb 22, Volume 490, Number 2, p.311-21, (1977) AbstractWebsite

Electron paramagnetic resonance spectra were recorded of three forms of Desulphovibrio gigas ferredoxin, FdI, FdI' and FdII. The g = 1.94 signal seen in dithionite-reduced samples is strong in FdI, weaker in FdI' and very small in FdII. The g = 2.02 signal in the oxidized proteins is weak in FdI and strongest in FdII. It is concluded that most of the 4Fe-4S centres in FdI change between states C- and C2-; FdI' contain both types of centre. There is no evidence that any particular centre can change reversibly between all three oxidation states. Circular dichroism spectra show differences between FdI and FdII even in the diamagnetic C2- state. The redox potentials of the iron-sulphur centres of the three oligomers (forms) are different. After formation of the apo-protein of FdII and reconstitution with iron and sulphide, the protein behaves more like FdI, showing a strong g = 1.94 signal in the reduced states.

Structural control of the redox potentials and of the physiological activity by oligomerization of ferredoxin, Moura, J. J., Xavier A. V., Hatchikian E. C., and Legall J. , FEBS Lett, May 1, Volume 89, Number 1, p.177-9, (1978) AbstractWebsite
n/a
Structural model of the Fe-hydrogenase/cytochrome c553 complex combining transverse relaxation-optimized spectroscopy experiments and soft docking calculations, Morelli, X., Czjzek M., Hatchikian C. E., Bornet O., Fontecilla-Camps J. C., Palma N. P., Moura J. J., and Guerlesquin F. , J Biol Chem, Jul 28, Volume 275, Number 30, p.23204-10, (2000) AbstractWebsite

Fe-hydrogenase is a 54-kDa iron-sulfur enzyme essential for hydrogen cycling in sulfate-reducing bacteria. The x-ray structure of Desulfovibrio desulfuricans Fe-hydrogenase has recently been solved, but structural information on the recognition of its redox partners is essential to understand the structure-function relationships of the enzyme. In the present work, we have obtained a structural model of the complex of Fe-hydrogenase with its redox partner, the cytochrome c(553), combining docking calculations and NMR experiments. The putative models of the complex demonstrate that the small subunit of the hydrogenase has an important role in the complex formation with the redox partner; 50% of the interacting site on the hydrogenase involves the small subunit. The closest contact between the redox centers is observed between Cys-38, a ligand of the distal cluster of the hydrogenase and Cys-10, a ligand of the heme in the cytochrome. The electron pathway from the distal cluster of the Fe-hydrogenase to the heme of cytochrome c(553) was investigated using the software Greenpath and indicates that the observed cysteine/cysteine contact has an essential role. The spatial arrangement of the residues on the interface of the complex is very similar to that already described in the ferredoxin-cytochrome c(553) complex, which therefore, is a very good model for the interacting domain of the Fe-hydrogenase-cytochrome c(553).

Structure and function of ferrochelatase, Ferreira, G. C., Franco R., Lloyd S. G., Moura I., Moura J. J., and Huynh B. H. , J Bioenerg Biomembr, Apr, Volume 27, Number 2, p.221-9, (1995) AbstractWebsite

Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression in Escherichia coli and in baculovirus-infected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.

Structure and function of molybdopterin containing enzymes, Romao, M. J., Knablein J., Huber R., and Moura J. J. , Prog Biophys Mol Biol, Volume 68, Number 2-3, p.121-44, (1997) AbstractWebsite

Molybdopterin containing enzymes are present in a wide range of living systems and have been known for several decades. However, only in the past two years have the first crystal structures been reported for this type of enzyme. This has represented a major breakthrough in this field. The enzymes share common structural features, but reveal different polypeptide folding topologies. In this review we give an account of the related spectroscopic information and the crystallographic results, with emphasis on structure-function studies.

Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 A, Rebelo, J. M., Dias J. M., Huber R., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Oct, Volume 6, Number 8, p.791-800, (2001) AbstractWebsite

The sulfate-reducing bacterium aldehyde oxidoreductase from Desulfovibrio gigas (MOP) is a member of the xanthine oxidase family of enzymes. It has 907 residues on a single polypeptide chain, a molybdopterin cytosine dinucleotide (MCD) cofactor and two [2Fe-2S] iron-sulfur clusters. Synchrotron data to almost atomic resolution were collected for improved cryo-cooled crystals of this enzyme in the oxidized form. The cell constants of a=b=141.78 A and c=160.87 A are about 2% shorter than those of room temperature data, yielding 233,755 unique reflections in space group P6(1)22, at 1.28 A resolution. Throughout the entire refinement the full gradient least-squares method was used, leading to a final R factor of 14.5 and Rfree factor of 19.3 (4sigma cut-off) with "riding" H-atoms at their calculated positions. The model contains 8146 non-hydrogen atoms described by anisotropic displacement parameters with an observations/parameters ratio of 4.4. It includes alternate conformations for 17 amino acid residues. At 1.28 A resolution, three Cl- and two Mg2+ ions from the crystallization solution were clearly identified. With the exception of one Cl- which is buried and 8 A distant from the Mo atom, the other ions are close to the molecular surface and may contribute to crystal packing. The overall structure has not changed in comparison to the lower resolution model apart from local corrections that included some loop adjustments and alternate side-chain conformations. Based on the estimated errors of bond distances obtained by blocked least-squares matrix inversion, a more detailed analysis of the three redox centres was possible. For the MCD cofactor, the resulting geometric parameters confirmed its reduction state as a tetrahydropterin. At the Mo centre, estimated corrections calculated for the Fourier ripples artefact are very small when compared to the experimental associated errors, supporting the suggestion that the fifth ligand is a water molecule rather than a hydroxide. Concerning the two iron-sulfur centres, asymmetry in the Fe-S distances as well as differences in the pattern of NH.S hydrogen-bonding interactions was observed, which influences the electron distribution upon reduction and causes non-equivalence of the individual Fe atoms in each cluster.

A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes, Huber, R., Hof P., Duarte R. O., Moura J. J., Moura I., Liu M. Y., Legall J., Hille R., Archer M., and Romao M. J. , Proc Natl Acad Sci U S A, Aug 20, Volume 93, Number 17, p.8846-51, (1996) AbstractWebsite

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

Subunit composition, crystallization and preliminary crystallographic studies of the Desulfovibrio gigas aldehyde oxidoreductase containing molybdenum and [2Fe-2S] centers, Romao, M. J., Barata B. A., Archer M., Lobeck K., Moura I., Carrondo M. A., Legall J., Lottspeich F., Huber R., and Moura J. J. , Eur J Biochem, Aug 1, Volume 215, Number 3, p.729-32, (1993) AbstractWebsite

The Desulfovibrio gigas aldehyde oxidoreductase contains molybdenum bound to a pterin cofactor and [2Fe-2S] centers. The enzyme was characterized by SDS/PAGE, gel-filtration and analytical ultracentrifugation experiments. It was crystallized at 4 degrees C, pH 7.2, using isopropanol and MgCl2 as precipitants. The crystals diffract beyond 0.3-nm (3.0-A) resolution and belong to space group P6(1)22 or its enantiomorph, with cell dimensions a = b = 14.45 nm and c = 16.32 nm. There is one subunit/asymmetric unit which gives a packing density of 2.5 x 10(-3) nm3/Da (2.5 A3/Da), consistent with the experimental crystal density, rho = 1.14 g/cm3. One dimer (approximately 2 x 100 kDa) is located on a crystallographic twofold axis.

The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

Temperature-dependent proton NMR investigation of the electronic structure of the trinuclear iron cluster of the oxidized Desulfovibrio gigas ferredoxin II, Macedo, Anjos L., Moura Isabel, Moura Jose J. G., Legall Jean, and Huynh Boi Hanh , Inorganic Chemistry, 1993/03/01, Volume 32, Number 7, p.1101-1105, (1993) AbstractWebsite
n/a
The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, Fauque, G., Peck, H. D. Jr., Moura J. J., Huynh B. H., Berlier Y., Dervartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I.,, and et al , FEMS Microbiol Rev, Dec, Volume 4, Number 4, p.299-344, (1988) AbstractWebsite

Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)

Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Moura, J. J., Moura I., Huynh B. H., Kruger H. J., Teixeira M., DuVarney R. C., Dervartanian D. V., Xavier A. V., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Oct 29, Volume 108, Number 4, p.1388-93, (1982) AbstractWebsite
n/a
A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site, Xie, Xiangjin, Hadt Ryan G., Pauleta Sofia R., Gonzalez Pablo J., Un Sun, Moura Isabel, and Solomon Edward I. , Journal of Inorganic Biochemistry, Oct, Volume 103, Number 10, p.1307-1313, (2009) AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccus pantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 angstrom. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thiorether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond. (C) 2009 Elsevier Inc. All rights reserved.