Publications

Export 131 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Bursakov S. A., Di Rocco G., Trincao J., Pickering I. J., George G. N., Calvete J. J., Shnyrov V. L., Brondino C. D., Pereira A. S., Lampreia J., Tavares P., Moura J. J., and Moura I. , J Inorg Biochem, May-Jun, Volume 102, Number 5-6, p.1380-95, (2008) AbstractWebsite

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

Influence of the protein staining in the fast ultrasonic sample treatment for protein identification through peptide mass fingerprint and matrix-assisted laser desorption ionization time of flight mass spectrometry, Galesio, M., Vieira D. V., Rial-Otero R., Lodeiro C., Moura I., and Capelo J. L. , Journal of Proteome Research, May, Volume 7, Number 5, p.2097-2106, (2008) AbstractWebsite

The influence of the protein staining used to visualize protein bands, after in-gel protein separation, for the correct identification of proteins by peptide mass fingerprint (PMF) after application of the ultrasonic in-gel protein protocol was studied. Coomassie brilliant blue and silver nitrate, both visible stains, and the fluorescent dyes Sypro Red and Sypro Orange were evaluated. Results obtained after comparison with the overnight in-gel protocol showed that good results, in terms of protein sequence coverage and number of peptides matched, can be obtained with anyone of the four stains studied. Two minutes of enzymatic digestion time was enough for proteins stained with coomassie blue, while 4 min was necessary when silver or Sypro stainings were employed in order to reach equivalent results to those obtained for the overnigh in-gel protein protocol. For the silver nitrate stain, the concentration of silver present in the staining solution must be 0.09% (w/v) to minimize background in the MALDI mass spectra.

Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum, Najmudin, S., Gonzalez P. J., Trincao J., Coelho C., Mukhopadhyay A., Cerqueira N. M., Romao C. C., Moura I., Moura J. J., Brondino C. D., and Romao M. J. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.737-53, (2008) AbstractWebsite

Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe-4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 A. The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH(2) ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (lambda = 1.77 A) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S-S distance between the sulfur ligand and the Sgamma atom of the molybdenum ligand Cys(A140) was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 A, indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with (15)N-labeled nitrate and in D(2)O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)-nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligand-based redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.

Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Kladova A. V., Bursakov S. A., Dias J. M., Texeira S., Shnyrov V. L., Moura J. J., Moura I., Romao M. J., and Trincao J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 64, Number Pt 7, p.593-5, (2008) AbstractWebsite

Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 A resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain, Samhan-Arias, A. K., Duarte R. O., Martin-Romero F. J., Moura J. J., and Gutierrez-Merino C. , Arch Biochem Biophys, Jan 15, Volume 469, Number 2, p.243-54, (2008) AbstractWebsite

Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 microM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q(1) and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q(1) and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range.

2007
EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction, Rivas, M. G., Gonzalez P. J., Brondino C. D., Moura J. J., and Moura I. , J Inorg Biochem, Nov, Volume 101, Number 11-12, p.1617-22, (2007) AbstractWebsite

The EPR characterization of the molybdenum(V) forms obtained on formate reduction of both as-prepared and inhibited formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774, an enzyme that catalyzes the oxidation of formate to CO(2), is reported. The Mo(V) EPR signal of the as-prepared formate-reduced enzyme is rhombic (g(max)=2.012, g(mid)=1.996, g(min)=1.985) and shows hyperfine coupling with two nuclear species with I=1/2. One of them gives an anisotropic splitting and is not solvent exchangeable (A(max)=11.7, A(mid)=A(min)=non-detectable, A-values in cm(-1)x10(-4)). The second species is exchangeable with solvent and produces a splitting at the three principal g-values (A(max)=7.7, A(mid)=10.0, A(min)=9.3). The hyperfine couplings of the non-solvent and solvent exchangeable nuclei are assigned to the hydrogen atoms of the beta-methylene carbon of a selenocysteine and to a Mo ligand whose nature, sulfydryl or hydroxyl, is still in debate. The Mo(V) species obtained in the presence of inhibitors (azide or cyanide) yields a nearly axial EPR signal showing only one detectable splitting given by nuclear species with I=1/2 (g(max)=2.092, g(mid)=2.000, g(min)=1.989, A(max)=non-detectable, A(mid)=A(min)=7.0), which is originated from the alpha-proton donated by the formate to a proximal ligand of the molybdenum. The possible structures of both paramagnetic molybdenum species (observed upon formate reduction in presence and absence of inhibitors) are discussed in comparison with the available structural information of this enzyme and the structural and EPR properties of the closely related formate dehydrogenase-H from Escherichia coli.

Gas chromatography mass spectrometry determination of acaricides from honey after a new fast ultrasonic-based solid phase micro-extraction sample treatment, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Mar 30, Volume 71, Number 5, p.1906-1914, (2007) AbstractWebsite

A method is reported for the determination of acaricides (amitraz, bromopropylate, coumaphos and fluvalinate) from honey by gas chromatography mass spectrometry after a new fast solid phase micro-extraction, SPME, procedure. Six different fibers were assessed for micro-extraction purpose studying the following variables: (i) SPME coating, (ii) extraction temperature, (iii) extraction time, (iv) desorption conditions and (v) agitation conditions. The new ultrasonic bath technology providing different sonication frequencies (35 and 130 kHz) and different working modes (Sweep, Standard and Degas) was studied and optimized for speeding up the acaricide micro-extraction. The best extraction results were achieved with the polyacrylate fiber. The extraction process was done in 30 min using the ultrasonic bath at 130 kHz in the Standard mode. Quality parameters of the proposed method show a good precision (<11%) and detection and quantitation limits lower than 6 and 15 ng/g, respectively, except for fluvalinate. Eleven Portuguese commercial honey samples were analyzed with the developed method in order to assess the performance of the method with real samples and to determine whether the concentration of acaricides in honey exceed their maximum residue levels (MRLs). Acaricide residues detected were lower than those established by the legislation. (c) 2006 Elsevier B.V. All rights reserved.

Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate, Gomes, S. P., Odlozilikova M., Almeida M. G., Araujo A. N., Couto C. M., and Montenegro M. C. , J Pharm Biomed Anal, Mar 12, Volume 43, Number 4, p.1376-81, (2007) AbstractWebsite

This work describes the construction and evaluation of lactate sol-gel biosensors to accomplish the determination of lactate in pharmaceutical products. Lactate oxidase was incorporated in a porous sol-gel film placed onto a platinum-based electrode. Acid and basic catalysis were assessed. When coupled to a sequential injection system (SIA) the biosensor, based on (3-aminopropyl)trimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyl-trimethoxysilane, deionised water, polyethylene glycol 6000 and acid catalyst, presented a range of linearity of 5x10(-5) to 5x10(-3)M. The analytical usefulness of the developed biosensor was evaluated through analysis of commercial pharmaceutical products containing lactate with a sampling rate of 40 samples h(-1). The enzyme remained active for at least 30 days, enabling about 700 determinations without sensitivity decrease.

New findings for in-gel digestion accelerated by high-intensity focused ultrasound for protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Carreira, R. J., Cordeiro F. M., Moro A. J., Rivas M. G., Rial-Otero R., Gaspar E. M., Moura I., and Capelo J. L. , Journal of Chromatography A, Jun 15, Volume 1153, Number 1-2, p.291-299, (2007) AbstractWebsite

New findings in sample treatment based on high-intensity focused ultrasound (HIFU) for protein digestion after polyacrylamide gel electrophoresis separation are presented. The following variables were studied: (i) sample volume; (ii) sonotrode diameter; (iii) previous protein denaturation; (iv) cooling; (v) enzyme concentration; and (vi) protein concentration. Results showed that positive protein identification could be done after protein separation by gel electrophoresis through peptide mass fingerprint (PMF) in a volume as low as 25 mu L. The time needed was less than 2 min and no cooling was necessary. The importance of the sonotrode diameter was negligible. On the other hand, protein denaturation before sonication was a trade-off for the success of procedure here described. The protein coverage was raised from 5 to 30%, and the number of peptides matching the proteins was also increased in a percentage ranging 10-100% when the classical overnight treatment is compared with the proposed HIFU procedure. The minimum amount of protein that can be identified using the HIFU sample treatment by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was 0.06 mu g. The lower concentration of trypsin successfully used to obtain an adequate protein digestion was 3.6 mu g/mL. (c) 2006 Elsevier B.V. All rights reserved.

Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis, Coelho, C., Gonzalez P. J., Trincao J., Carvalho A. L., Najmudin S., Hettman T., Dieckman S., Moura J. J., Moura I., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jun 1, Volume 63, Number Pt 6, p.516-9, (2007) AbstractWebsite

The periplasmic nitrate reductase from Cupriavidus necator (also known as Ralstonia eutropha) is a heterodimer that is able to reduce nitrate to nitrite. It comprises a 91 kDa catalytic subunit (NapA) and a 17 kDa subunit (NapB) that is involved in electron transfer. The larger subunit contains a molybdenum active site with a bis-molybdopterin guanine dinucleotide cofactor as well as one [4Fe-4S] cluster, while the small subunit is a di-haem c-type cytochrome. Crystals of the oxidized form of this enzyme were obtained using polyethylene glycol 3350 as precipitant. A single crystal grown at the High Throughput Crystallization Laboratory of the EMBL in Grenoble diffracted to beyond 1.5 A at the ESRF (ID14-1), which is the highest resolution reported to date for a nitrate reductase. The unit-cell parameters are a = 142.2, b = 82.4, c = 96.8 A, beta = 100.7 degrees, space group C2, and one heterodimer is present per asymmetric unit.

Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P. pantotrophus pseudoazurin: kinetics of intermolecular electron transfer, de Sousa, P. M., Pauleta S. R., Goncalves M. L., Pettigrew G. W., Moura I., Dos Santos M. M., and Moura J. J. , J Biol Inorg Chem, Jun, Volume 12, Number 5, p.691-8, (2007) AbstractWebsite

This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.

Crystal structure of the 16 heme cytochrome from Desulfovibrio gigas: A glycosylated protein in a sulphate-reducing bacterium, Santos-Silva, Teresa, Dias Joao Miguel, Dolla Alain, Durand Marie-Claire, Goncalves Luisa L., Lampreia Jorge, Moura Isabel, and Romao Maria Joao , Journal of Molecular Biology, Jul 20, Volume 370, Number 4, p.659-673, (2007) AbstractWebsite

Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown. using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 angstrom resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane. (c) 2007 Elsevier Ltd. All rights reserved.

A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase, Almeida, M. G., Silveira C. M., Guigliarelli B., Bertrand P., Moura J. J., Moura I., and Leger C. , FEBS Lett, Jan 23, Volume 581, Number 2, p.284-8, (2007) AbstractWebsite

Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.

Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration, Soares, S. S., Martins H., Duarte R. O., Moura J. J., Coucelo J., Gutierrez-Merino C., and Aureliano M. , J Inorg Biochem, Jan, Volume 101, Number 1, p.80-8, (2007) AbstractWebsite

The contribution of decameric vanadate species to vanadate toxic effects in cardiac muscle was studied following an intravenous administration of a decavanadate solution (1mM total vanadium) in Sparus aurata. Although decameric vanadate is unstable in the assay medium, it decomposes with a half-life time of 16 allowing studying its effects not only in vitro but also in vivo. After 1, 6 and 12h upon decavanadate administration the increase of vanadium in blood plasma, red blood cells and in cardiac mitochondria and cytosol is not affected in comparison to the administration of a metavanadate solution containing labile oxovanadates. Cardiac tissue lipid peroxidation increases up to 20%, 1, 6 and 12h after metavanadate administration, whilst for decavanadate no effects were observed except 1h after treatment (+20%). Metavanadate administration clearly differs from decavanadate by enhancing, 12h after exposure, mitochondrial superoxide dismutase (SOD) activity (+115%) and not affecting catalase (CAT) activity whereas decavanadate increases SOD activity by 20% and decreases (-55%) mitochondrial CAT activity. At early times of exposure, 1 and 6h, the only effect observed upon decavanadate administration was the increase by 20% of SOD activity. In conclusion, decavanadate has a different response pattern of lipid peroxidation and oxidative stress markers, in spite of the same vanadium distribution in cardiac cells observed after decavanadate and metavanadate administration. It is suggested that once formed decameric vanadate species has a different reactivity than vanadate, thus, pointing out that the differential contribution of vanadium oligomers should be taken into account to rationalize in vivo vanadate toxicity.

Chromatographic-based methods for pesticide determination in honey: An overview, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Feb 15, Volume 71, Number 2, p.503-514, (2007) AbstractWebsite

Nowadays the control of pesticides in honey is an issue of primary health importance as consequence of the increasing content of these chemicals in the aforementioned matrix. This poisoning has led to the worldwide increasing loss of bees since 1995. From Europe to Canada, scientist, beekeepers and chemical companies disagree about the reasons that have led to colony losses higher than 50% in some areas. This problem has become a public health issue due to the high honey worldwide consumption. The presence of pesticides in honey has been directly related to bees' mortality by some researchers through pesticide presence in (1) pollen, (2) honeycomb walls, (3) own bees and (4) honey. In this work we describe the actual state-of-the-art for pesticides determination in honey along with a review in this subject focused on sample treatments and instrumentation. Finally, future trends are also commented. (c) 2006 Elsevier B.V. All rights reserved.

Spectroscopic, computational, and kinetic studies of the mu4-sulfide-bridged tetranuclear CuZ cluster in N2O reductase: pH effect on the edge ligand and its contribution to reactivity, Ghosh, S., Gorelsky S. I., George S. D., Chan J. M., Cabrito I., Dooley D. M., Moura J. J., Moura I., and Solomon E. I. , J Am Chem Soc, Apr 4, Volume 129, Number 13, p.3955-65, (2007) AbstractWebsite

A combination of spectroscopy and density functional theory (DFT) calculations has been used to evaluate the pH effect at the CuZ site in Pseudomonas nautica (Pn) nitrous oxide reductase (N2OR) and Achromobacter cycloclastes (Ac) N2OR and its relevance to catalysis. Absorption, magnetic circular dichroism, and electron paramagnetic resonance with sulfur K-edge X-ray absorption spectra of the enzymes at high and low pH show minor changes. However, resonance Raman (rR) spectroscopy of PnN2OR at high pH shows that the 415 cm-1 Cu-S vibration (observed at low pH) shifts to higher frequency, loses intensity, and obtains a 9 cm-1 18O shift, implying significant Cu-O character, demonstrating the presence of a OH- ligand at the CuICuIV edge. From DFT calculations, protonation of either the OH- to H2O or the mu4-S2- to mu4-SH- would produce large spectral changes which are not observed. Alternatively, DFT calculations including a lysine residue at an H-bonding distance from the CuICuIV edge ligand show that the position of the OH- ligand depends on the protonation state of the lysine. This would change the coupling of the Cu-(OH) stretch with the Cu-S stretch, as observed in the rR spectrum. Thus, the observed pH effect (pKa approximately 9.2) likely reflects protonation equilibrium of the lysine residue, which would both raise E degrees and provide a proton for lowering the barrier for the N-O cleavage and for reduction of the [Cu4S(im)7OH]2+ to the fully reduced 4CuI active form for turnover.

2006
Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate, Ramos, S., Manuel M., Tiago T., Duarte R., Martins J., Gutierrez-Merino C., Moura J. J., and Aureliano M. , J Inorg Biochem, Nov, Volume 100, Number 11, p.1734-43, (2006) AbstractWebsite

Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction, Gonzalez, P. J., Correia C., Moura I., Brondino C. D., and Moura J. J. , J Inorg Biochem, May, Volume 100, Number 5-6, p.1015-23, (2006) AbstractWebsite

Nitrogen is a vital component in living organisms as it participates in the making of essential biomolecules such as proteins, nucleic acids, etc. In the biosphere, nitrogen cycles between the oxidation states +V and -III producing many species that constitute the biogeochemical cycle of nitrogen. All reductive branches of this cycle involve the conversion of nitrate to nitrite, which is catalyzed by the enzyme nitrate reductase. The characterization of nitrate reductases from prokaryotic organisms has allowed us to gain considerable information on the molecular basis of nitrate reduction. Prokaryotic nitrate reductases are mononuclear Mo-containing enzymes sub-grouped as respiratory nitrate reductases, periplasmic nitrate reductases and assimilatory nitrate reductases. We review here the biological and molecular properties of these three enzymes along with their gene organization and expression, which are necessary to understand the biological processes involved in nitrate reduction.

EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774, Gonzalez, P. J., Rivas M. G., Brondino C. D., Bursakov S. A., Moura I., and Moura J. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.609-16, (2006) AbstractWebsite

Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe-4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to -500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe-4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.

Redox chemistry of low-pH forms of tetrahemic cytochrome c3, Santos, M., Dos Santos M. M., Goncalves M. L., Costa C., Romao J. C., and Moura J. J. , J Inorg Biochem, Dec, Volume 100, Number 12, p.2009-16, (2006) AbstractWebsite

Desulfovibrio vulgaris Hildenborough cytochrome c(3) contains four hemes in a low-spin state with bis-histidinyl coordination. High-spin forms of cytochrome c(3) can be generated by protonation of the axial ligands in order to probe spin equilibrium (low-spin/high-spin). The spin alterations occurring at acid pH, the associated changes in redox potentials, as well as the reactivity towards external ligands were followed by the conjunction of square wave voltammetry and UV-visible, CD, NMR and EPR spectroscopies. These processes may be used for modelling the action of enzymes that use spin equilibrium to promote enzyme activity and reactivity towards small molecules.

Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster, Rodrigues, P. M., Macedo A. L., Goodfellow B. J., Moura I., and Moura J. J. , J Biol Inorg Chem, Apr, Volume 11, Number 3, p.307-15, (2006) AbstractWebsite

Desulfovibrio gigas ferredoxin II (DgFdII) is a small protein with a polypeptide chain composed of 58 amino acids, containing one Fe3S4 cluster per monomer. Upon studying the redox cycle of this protein, we detected a stable intermediate (FdIIint) with four 1H resonances at 24.1, 20.5, 20.8 and 13.7 ppm. The differences between FdIIox and FdIIint were attributed to conformational changes resulting from the breaking/formation of an internal disulfide bridge. The same 1H NMR methodology used to fully assign the three cysteinyl ligands of the [3Fe-4S] core in the oxidized state (DgFdIIox) was used here for the assignment of the same three ligands in the intermediate state (DgFdIIint). The spin-coupling model used for the oxidized form of DgFdII where magnetic exchange coupling constants of around 300 cm-1 and hyperfine coupling constants equal to 1 MHz for all the three iron centres were found, does not explain the isotropic shift temperature dependence for the three cysteinyl cluster ligands in DgFdIIint. This study, together with the spin delocalization mechanism proposed here for DgFdIIint, allows the detection of structural modifications at the [3Fe-4S] cluster in DgFdIIox and DgFdIIint.

2005
The methylenetetrahydrofolate reductase (MTHFR) 677C-->T mutation and cardiovascular risk--A case of ischemic stroke and acute myocardial infarction, Melo, M., Gaspar E., Madeira S., de Moura P., Alexandrino B., and de Moura J. J. , Rev Port Cardiol, Jan, Volume 24, Number 1, p.89-99, (2005) AbstractWebsite

The authors report the case of a 39-year-old male patient who had an ischemic stroke (complete infarction of right anterior cerebral circulation) and an acute myocardial infarction during the same year. Molecular study revealed he was homozygous for the 677C-->T mutation in the gene coding for methylenetetrahydrofolate reductase, a key enzyme of folate metabolism; deficiency of this enzyme is associated with increased cardiovascular risk and neurological lesions. Some considerations are put forward about hyperhomocysteinemia and the MTHFR 677C-->T mutation as cardiovascular risk factors.

Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump, Aureliano, M., Tiago T., Gandara R. M., Sousa A., Moderno A., Kaliva M., Salifoglou A., Duarte R. O., and Moura J. J. , J Inorg Biochem, Dec, Volume 99, Number 12, p.2355-61, (2005) AbstractWebsite

Among the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.

Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe-2S]1+,2+ clusters, More, C., Asso M., Roger G., Guigliarelli B., Caldeira J., Moura J., and Bertrand P. , Biochemistry, Aug 30, Volume 44, Number 34, p.11628-35, (2005) AbstractWebsite

The aldehyde oxidoreductase from Desulfovibrio gigas belongs to the family of molybdenum hydroxylases. Besides a molybdenum cofactor which constitutes their active site, these enzymes contain two [2Fe-2S](2+,1+) clusters which are believed to transfer the electrons provided by the substrate to an acceptor which is either a FAD group or an electron-transferring protein. When the three metal centers of D. gigas AOR are simultaneously paramagnetic, splittings due to intercenter spin-spin interactions are visible when the EPR spectra are recorded at low temperatures. By studying quantitatively these interactions with a model based on the X-ray crystal structure, which takes into consideration the interactions between the magnetic moments carried by all the metal sites of the system, it is possible to determine the location of the reducible sites of the [2Fe-2S] clusters. When combined with the electron-transfer pathways proposed on the basis of the X-ray crystal structure, the results provide a detailed description of the electron-transfer system of D. gigas AOR.

Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking, Palma, P. N., Lagoutte B., Krippahl L., Moura J. J., and Guerlesquin F. , FEBS Lett, Aug 29, Volume 579, Number 21, p.4585-90, (2005) AbstractWebsite

Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.

loading