Publications

Export 212 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
1
17O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas, Carepo, M., Tierney D. L., Brondino C. D., Yang T. C., Pamplona A., Telser J., Moura I., Moura J. J., and Hoffman B. M. , J Am Chem Soc, Jan 16, Volume 124, Number 2, p.281-6, (2002) AbstractWebsite

Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.

A
Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase, Ghosh, S., Gorelsky S. I., Chen P., Cabrito I., Moura J. J., Moura I., and Solomon E. I. , J Am Chem Soc, Dec 24, Volume 125, Number 51, p.15708-9, (2003) AbstractWebsite

The tetranuclear CuZ cluster catalyzes the two-electron reduction of N2O to N2 and H2O in the enzyme nitrous oxide reductase. This study shows that the fully reduced 4CuI form of the cluster correlates with the catalytic activity of the enzyme. This is the first demonstration that the S = 1/2 form of CuZ can be further reduced. Complementary DFT calculations support the experimental findings and demonstrate that N2O binding in a bent mu-1,3-bridging mode to the 4CuI form is most efficient due to strong back-bonding from two reduced copper atoms. This back-donation activates N2O for electrophilic attack by a proton.

The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by sigma(54) and a Cognate Transcriptional Regulator, Fievet, Anouchka, My Laetitia, Cascales Eric, Ansaldi Mireille, Pauleta Sofia R., Moura Isabel, Dermoun Zorah, Bernard Christophe S., Dolla Alain, and Aubert Corinne , Journal of Bacteriology, Jul, Volume 193, Number 13, p.3207-3219, (2011) AbstractWebsite

Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the sigma(54)-RNA polymerase. We further demonstrate that the sigma(54)-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with sigma(54)-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the sigma(70)-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed.

Analysis of the activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase through an electron transfer chain, Paes de Sousa, P. M., Rodrigues D., Timoteo C. G., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Aug, Volume 16, Number 6, p.881-8, (2011) AbstractWebsite

The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an E(r)C'(i) catalytic mechanism. An intermolecular electron transfer rate constant of (4 +/- 1) x 10(5) M(-1) s(-1) was estimated for both forms of the enzyme, as well as a similar Michaelis-Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.

Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II, Caldeira, J., Belle V., Asso M., Guigliarelli B., Moura I., Moura J. J., and Bertrand P. , Biochemistry, Mar 14, Volume 39, Number 10, p.2700-7, (2000) AbstractWebsite

Molybdoenzymes of the xanthine oxidase family contain two [2Fe-2S](1+,2+) clusters that are bound to the protein by very different cysteine motifs. In the X-ray crystal structure of Desulfovibrio gigas aldehyde oxidoreductase, the cluster ligated by a ferredoxin-type motif is close to the protein surface, whereas that ligated by an unusual cysteine motif is in contact with the molybdopterin [Romao, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R. (1995) Science 270, 1170-1176]. These two clusters display distinct electron paramagnetic resonance (EPR) signals: the less anisotropic one, called signal I, is generally similar to the g(av) approximately 1.96-type signals given by ferredoxins, whereas signal II often exhibits anomalous properties such as very large g values, broad lines, and very fast relaxation properties. A detailed comparison of the temperature dependence of the spin-lattice relaxation time and of the intensity of these signals in D. gigas aldehyde oxidoreductase and in milk xanthine oxidase strongly suggests that the peculiar EPR properties of signal II arise from the presence of low-lying excited levels reflecting significant double exchange interactions. The issue raised by the assignment of signals I and II to the two [2Fe-2S](1+) clusters was solved by using the EPR signal of the Mo(V) center as a probe. The temperature dependence of this signal could be quantitatively reproduced by assuming that the Mo(V) center is coupled to the cluster giving signal I in xanthine oxidase as well as in D. gigas aldehyde oxidoreductase. This demonstrates unambiguously that, in both enzymes, signal I arises from the center which is closest to the molybdenum cofactor.

Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, May, Volume 98, Number 5, p.833-40, (2004) AbstractWebsite

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS(4)(2-) moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed.

Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate, Gomes, S. P., Odlozilikova M., Almeida M. G., Araujo A. N., Couto C. M., and Montenegro M. C. , J Pharm Biomed Anal, Mar 12, Volume 43, Number 4, p.1376-81, (2007) AbstractWebsite

This work describes the construction and evaluation of lactate sol-gel biosensors to accomplish the determination of lactate in pharmaceutical products. Lactate oxidase was incorporated in a porous sol-gel film placed onto a platinum-based electrode. Acid and basic catalysis were assessed. When coupled to a sequential injection system (SIA) the biosensor, based on (3-aminopropyl)trimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyl-trimethoxysilane, deionised water, polyethylene glycol 6000 and acid catalyst, presented a range of linearity of 5x10(-5) to 5x10(-3)M. The analytical usefulness of the developed biosensor was evaluated through analysis of commercial pharmaceutical products containing lactate with a sampling rate of 40 samples h(-1). The enzyme remained active for at least 30 days, enabling about 700 determinations without sensitivity decrease.

Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction, Correia, H., Marangon J., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , J Biol Inorg Chem, Volume 20, p.219-229, (2015)
ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase, Nunes, C. I., Brás J. L., Najmudin S., Moura J. J. G., Moura I., and Carepo M. , J Biol Inorg Chem, Volume 19, p.1277-1285, (2014)
Artefacts induced on c-type haem proteins by electrode surfaces, Paes de Sousa, P. M., Pauleta S. R., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Feb, Volume 16, Number 2, p.209-15, (2011) AbstractWebsite

In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met-His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c(3) from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.

ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc, Gavel, O. Y., Bursakov S. A., Calvete J. J., George G. N., Moura J. J., and Moura I. , Biochemistry, Nov 17, Volume 37, Number 46, p.16225-32, (1998) AbstractWebsite

Adenosine triphosphate sulfurylase catalyzes the formation of adenosine 5'-phosphosulfate from adenosine triphosphate and sulfate. The enzyme plays a crucial role in sulfate activation, the key step for sulfate utilization, and has been purified from crude extracts of Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio gigas. Both proteins are homotrimers [141 kDa (3 x 47) for D. desulfuricans and 147 kDa (3 x 49) for D. gigas] and have been identified, for the first time, as metalloproteins containing cobalt and zinc. EXAFS reveals that either cobalt or zinc binds endogenously at presumably equivalent metal binding sites and is tetrahedrally coordinated to one nitrogen and three sulfur atoms. Furthermore, the electronic absorption spectra display charge-transfer bands at 335 and 370 nm consistent with sulfur coordination to cobalt, and as expected for a distorted tetrahedral cobalt geometry, d-d bands are observed at 625, 666, and 715 nm. This geometry is supported by the observation of high-spin Co2+ EPR signals at g approximately 6.5.

B
Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction, Gonzalez, P. J., Correia C., Moura I., Brondino C. D., and Moura J. J. , J Inorg Biochem, May, Volume 100, Number 5-6, p.1015-23, (2006) AbstractWebsite

Nitrogen is a vital component in living organisms as it participates in the making of essential biomolecules such as proteins, nucleic acids, etc. In the biosphere, nitrogen cycles between the oxidation states +V and -III producing many species that constitute the biogeochemical cycle of nitrogen. All reductive branches of this cycle involve the conversion of nitrate to nitrite, which is catalyzed by the enzyme nitrate reductase. The characterization of nitrate reductases from prokaryotic organisms has allowed us to gain considerable information on the molecular basis of nitrate reduction. Prokaryotic nitrate reductases are mononuclear Mo-containing enzymes sub-grouped as respiratory nitrate reductases, periplasmic nitrate reductases and assimilatory nitrate reductases. We review here the biological and molecular properties of these three enzymes along with their gene organization and expression, which are necessary to understand the biological processes involved in nitrate reduction.

Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study, Paes de Sousa, P. M., Pauleta S. R., Rodrigues D., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.779-87, (2008) AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Correia, C., Besson S., Brondino C. D., Gonzalez P. J., Fauque G., Lampreia J., Moura I., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1321-33, (2008) AbstractWebsite

Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Iota) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at Em=+197 mV (heme c) and -4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe-4S]+ cluster and overlapping signals associated with at least three types of [4Fe-4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called "low-pH" and "high-pH," changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.

Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis, Ramanaiaha, S. V., Cordas C. M., Matias S. C., Reddyd M. V., Leitão J. H., and Fonseca L. P. , Biotechnology Reports, Volume 32, p.e00693, (2021)
C
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, K., Pereira A. S., Martins C. E., Timoteo C. G., Tavares P., Spinelli S., Kinne J., Flaudrops C., Cambillau C., Muyldermans S., Moura I., Moura J. J., Tegoni M., and Desmyter A. , Protein Sci, Mar, Volume 18, Number 3, p.619-28, (2009) AbstractWebsite

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.

Can ultrasonic energy efficiently speed (18)O-labeling of proteins?, Carreira, Ricardo J., Lodeiro Carlos, Diniz Mario S., Moura Isabel, and Capelo Jose L. , Proteomics, Nov, Volume 9, Number 21, p.4974-4977, (2009) AbstractWebsite

We report in this work on the robustness of ultrasonic energy as a tool to speed the isotopic labeling of proteins using the (18)O-decoupling procedure. The first part of the decoupling procedure, comprising protein denaturation, reduction, alkylation and digestion, is done in 8 min under the effects of an ultrasonic field whilst the second part, the isotopic labeling, was assayed with and without the use of ultrasonic energy. Our results clearly demonstrate that the (18)O-isotopic labeling in a decoupling procedure cannot be accelerated using an ultrasonic field.

Can ultrasonic energy efficiently speed (18)O-labeling of proteins?, Carreira, Ricardo J., Lodeiro Carlos, Diniz Mario S., Moura Isabel, and Capelo Jose L. , Proteomics, Nov, Volume 9, Number 21, p.4974-4977, (2009) AbstractWebsite

We report in this work on the robustness of ultrasonic energy as a tool to speed the isotopic labeling of proteins using the (18)O-decoupling procedure. The first part of the decoupling procedure, comprising protein denaturation, reduction, alkylation and digestion, is done in 8 min under the effects of an ultrasonic field whilst the second part, the isotopic labeling, was assayed with and without the use of ultrasonic energy. Our results clearly demonstrate that the (18)O-isotopic labeling in a decoupling procedure cannot be accelerated using an ultrasonic field.

Carbon dioxide utilisation - bioelectrochemical approaches, C.M., Cordas, J.J.G. Moura, A. Escapa, and R. Mateos , Enzymes for Solving Humankind's Problems, Moura J.J.G., Moura I., Maia L.B. (eds), p.83-108, (2021)
The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification, Carreira, C., Pauleta S. R., and Moura I. , J Inorg Biochem, Volume 177, p.423-434, (2017)
Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. , Biochem Biophys Res Commun, Apr 16, Volume 221, Number 2, p.414-21, (1996) AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni, de Jong, G. A., Caldeira J., Sun J., Jongejan J. A., de Vries S., Loehr T. M., Moura I., Moura J. J., and Duine J. A. , Biochemistry, Jul 25, Volume 34, Number 29, p.9451-8, (1995) AbstractWebsite

Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

Chromatographic-based methods for pesticide determination in honey: An overview, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Feb 15, Volume 71, Number 2, p.503-514, (2007) AbstractWebsite

Nowadays the control of pesticides in honey is an issue of primary health importance as consequence of the increasing content of these chemicals in the aforementioned matrix. This poisoning has led to the worldwide increasing loss of bees since 1995. From Europe to Canada, scientist, beekeepers and chemical companies disagree about the reasons that have led to colony losses higher than 50% in some areas. This problem has become a public health issue due to the high honey worldwide consumption. The presence of pesticides in honey has been directly related to bees' mortality by some researchers through pesticide presence in (1) pollen, (2) honeycomb walls, (3) own bees and (4) honey. In this work we describe the actual state-of-the-art for pesticides determination in honey along with a review in this subject focused on sample treatments and instrumentation. Finally, future trends are also commented. (c) 2006 Elsevier B.V. All rights reserved.

Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli, Chen, B., Menon N. K., Dervertarnian L., Moura J. J., and Przybyla A. E. , FEBS Lett, Sep 12, Volume 351, Number 3, p.401-4, (1994) AbstractWebsite

We have cloned the gene encoding Desulfovibrio gigas ferredoxin using a photodigoxigenin-labelled probe synthesized with the polymerase chain reaction. The DNA sequence of the gene predicts a polypeptide of 58 residues after removal of the initial formyl methionine (polypeptide M(r) = 6,276). The ferredoxin gene was expressed in aerobically grown E. coli behind the lac promoter of pUC18 resulting in a high level of ferredoxin expression which comprises about 10% of the total cell protein. EPR analysis of recombinant ferredoxin revealed the presence of a [3Fe-4S] cluster which is characteristic of native D. gigas ferredoxin II.

Comparative electrochemical behavior of cytochrome c on aqueous solutions containing choline-based room temperature ionic liquids, Matias, S. C., Lourenço N. M. T., Fonseca J. P., and Cordas C. M. , ChemistrySelect, Volume 2, p.8701–8705, (2017) Website