Publications

Export 212 results:
Sort by: Author Title Type [ Year  (Desc)]
1999
Electrochemical studies on c-type cytochromes at microelectrodes, Correia dos Santos, M. M., Paes de Sousa P. M., Simões Gonçalves M. L., Lopes H., Moura I., and Moura J. J. G. , Journal of Electroanalytical Chemistry, Volume 464, Number 1, p.76-84, (1999) AbstractWebsite
n/a
1998
ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc, Gavel, O. Y., Bursakov S. A., Calvete J. J., George G. N., Moura J. J., and Moura I. , Biochemistry, Nov 17, Volume 37, Number 46, p.16225-32, (1998) AbstractWebsite

Adenosine triphosphate sulfurylase catalyzes the formation of adenosine 5'-phosphosulfate from adenosine triphosphate and sulfate. The enzyme plays a crucial role in sulfate activation, the key step for sulfate utilization, and has been purified from crude extracts of Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio gigas. Both proteins are homotrimers [141 kDa (3 x 47) for D. desulfuricans and 147 kDa (3 x 49) for D. gigas] and have been identified, for the first time, as metalloproteins containing cobalt and zinc. EXAFS reveals that either cobalt or zinc binds endogenously at presumably equivalent metal binding sites and is tetrahedrally coordinated to one nitrogen and three sulfur atoms. Furthermore, the electronic absorption spectra display charge-transfer bands at 335 and 370 nm consistent with sulfur coordination to cobalt, and as expected for a distorted tetrahedral cobalt geometry, d-d bands are observed at 625, 666, and 715 nm. This geometry is supported by the observation of high-spin Co2+ EPR signals at g approximately 6.5.

Iron compounds after erythrophagocytosis: chemical characterization and immunomodulatory effects, Costa, L. M., Moura E. M., Moura J. J., and de Sousa M. , Biochem Biophys Res Commun, Jun 9, Volume 247, Number 1, p.159-65, (1998) AbstractWebsite

In humans, the lymphomyeloid system has a fundamental role on iron metabolism promoting its recycling due to a continuous removal of effete red blood cells. Additionally, one of the most intriguing aspects of metalloporphyrins in biology is their effect on the immune system. However, the process of erythrocyte catabolism is still poorly understood and needs further research. In the present study, we attempt to investigate the nature and the possible physiologic role of Fe compounds released after erythrophagocytosis during the removal of red blood cells. Monocyte erythrophagocytosis in vitro experiments were done to characterize chemically the Fe compounds present inside the cells and in the culture supernatants. We tested the probable immunomodulatory functions of erythrophagocytosis products over lymphocyte cultures activated in vitro with T mitogens (alpha-CD3). Data obtained from atomic absorption spectroscopy confirmed the presence of Fe in the culture supernatants of monocyte cultures after erythrophagocytosis. Also, high-spin haem complexes derived from erythrocyte catabolism were detected by electron paramagnetic electronic resonance. Finally, in vitro activated lymphocyte proliferation experiments indicate the co-mitogenic properties of monocyte culture supernatants after red blood cells phagocytosis. Thus, the results of the present work provide evidence that culture monocyte supernatants after in vitro erythrophagocytosis contain Fe (III) high-spin haem complexes and show lymphocyte proliferation co-stimulatory properties.

The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

Metal binding to the tetrathiolate motif of desulforedoxin and related polypeptides, Kennedy, M., Yu L., Lima M. J., Ascenso C. S., Czaja C., Moura I., Moura J. J. G., and Rusnak F. , Journal of Biological Inorganic Chemistry, Dec, Volume 3, Number 6, p.643-649, (1998) AbstractWebsite

Desulforedoxin and the N-terminus of desulfoferrodoxin share a 36 amino acid domain containing a (Cys-S)(4) metal binding site. Recombinant forms of desulforedoxin, an N-terminal fragment of desulfoferrodoxin, and two desulforedoxin mutant proteins were reconstituted with Fe3+ Cd2+, and Zn2+ and relative metal ion affinities assessed by proton titrations. Protons compete with metal for protein ligands, a process that can be followed by monitoring the optical spectrum of the metal-protein complex as a function of pH. For all polypeptides, Fe3+ bound with the highest affinity, whereas the affinity of Zn2+ was greater than Cd2+ in desulforedoxin and the N-terminal fragment of desulfoferrodoxin, but this order was reversed in desulforedoxin mutant proteins. Metal binding in both mutants was significantly impaired. Furthermore, the Fe3+ complex of both mutants underwent a time-dependent bleaching process which coincided with increased reactivity of cysteine residues to Ellman's reagent and concomitant metal dissociation. It is hypothesized that this results from an autoredox reaction in which Fe3+ is reduced to Fe2+ with attendant oxidation of ligand thiols.

Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus, Feio, M. J., Beech I. B., Carepo M., Lopes J. M., Cheung C. W., Franco R., Guezennec J., Smith J. R., Mitchell J. I., Moura J. J., and Lino A. R. , Anaerobe, Apr, Volume 4, Number 2, p.117-30, (1998) AbstractWebsite

A novel sulphate-reducing bacterium (Ind 1) was isolated from a biofilm removed from a severely corroded carbon steel structure in a marine environment. Light microscopy observations revealed that cells were Gram-negative, rod shaped and very motile. Partial 16S rRNA gene sequencing and analysis of the fatty acid profile demonstrated a strong similarity between the new species and members from the Desulfovibrio genus. This was confirmed by the results obtained following purification and characterisation of the key proteins involved in the sulphate-reduction pathway. Several metal-containing proteins, such as two periplasmic proteins: hydrogenase and cytochrome c3, and two cytoplasmic proteins: ferredoxin and sulphite reductase, were isolated and purified. The latter proved to be of the desulfoviridin type which is typical of the Desulfovibrio genus. The study of the remaining proteins revealed a high degree of similarity with the homologous proteins isolated from Desulfovibrio gigas. However, the position of the strain within the phylogenetic tree clearly indicates that the bacterium is closely related to Desulfovibrio gabonensis, and these three strains form a separate cluster in the delta subdivision of the Proteobacteria. On the basis of the results obtained, it is suggested that Ind 1 belongs to a new species of the genus Desulfovibrio, and the name Desulfovibrio indonensis is proposed.

1997
The primary structure of the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveals an unusual type of diheme cytochrome c, Devreese, B., Costa C., Demol H., Papaefthymiou V., Moura I., Moura J. J., and Van Beeumen J. , Eur J Biochem, Sep 1, Volume 248, Number 2, p.445-51, (1997) AbstractWebsite

The complete amino acid sequence of the unusual diheme split-Soret cytochrome c from the sulphate-reducing Desulfovibrio desulfuricans strain ATCC 27774 has been determined using classical chemical sequencing techniques and mass spectrometry. The 247-residue sequence shows almost no similarity with any other known diheme cytochrome c, but the heme-binding site of the protein is similar to that of the cytochromes c3 from the sulphate reducers. The cytochrome-c-like domain of the protein covers only the C-terminal part of the molecule, and there is evidence for at least one more domain containing four cysteine residues, which might bind another cofactor, possibly a non-heme iron-containing cluster. This domain is similar to a sequence fragment of the genome of Archaeoglobus fulgidus, which confirms the high conservation of the genes involved in sulfate reduction.

Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774, Bursakov, S. A., Carneiro C., Almendra M. J., Duarte R. O., Caldeira J., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Oct 29, Volume 239, Number 3, p.816-22, (1997) AbstractWebsite

Some sulfate reducing bacteria can induce nitrate reductase when grown on nitrate containing media being involved in dissimilatory reduction of nitrate, an important step of the nitrogen cycle. Previously, it was reported the purification of the first soluble nitrate reductase from a sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774 (S.A. Bursakov, M.-Y. Liu, W.J. Payne, J. LeGall, I. Moura, and J.J.G. Moura (1995) Anaerobe 1, 55-60). The present work provides further information about this monomeric periplasmic nitrate reductase (Dd NAP). It has a molecular mass of 74 kDa, 18.6 U specific activity, KM (nitrate) = 32 microM and a pHopt in the range 8-9.5. Dd NAP has peculiar properties relatively to ionic strength and cation/anion activity responses. It is shown that monovalent cations (potassium and sodium) stimulate NAP activity and divalent (magnesium and calcium) inhibited it. Sulfate anion also acts as an activator in KPB buffer. NAP native form is protected by phosphate anion from cyanide inactivation. In the presence of phosphate, cyanide even stimulates NAP activity (up to 15 mM). This effect was used in the purification procedure to differentiate between nitrate and nitrite reductase activities, since the later is effectively blocked by cyanide. Ferricyanide has an inhibitory effect at concentrations higher than 1 mM. The N-terminal amino acid sequence has a cysteine motive C-X2-C-X3-C that is most probably involved in the coordination of the [4Fe-4S] center detected by EPR spectroscopy. The active site of the enzyme consists in a molybdopterin, which is capable for the activation of apo-nit-1 nitrate reductase of Neurospora crassa. The oxidized product of the pterin cofactor obtained by acidic hidrolysis of native NAP with sulfuric acid was identified by HPLC chromatography and characterized as a molybdopterin guanine dinucleotide (MGD).

Fe-57 Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: Comparison of the NiA, NiB, and NiC states, Huyett, J. E., Carepo M., Pamplona A., Franco R., Moura I., Moura J. J. G., and Hoffman B. M. , Journal of the American Chemical Society, Oct 1, Volume 119, Number 39, p.9291-9292, (1997) AbstractWebsite
n/a
Nitrate and nitrite utilization in sulfate-reducing bacteria, Moura, I., Bursakov S., Costa C., and Moura J. J. , Anaerobe, Oct, Volume 3, Number 5, p.279-90, (1997) AbstractWebsite
n/a
The formate dehydrogenase isolated from the aerobe Methylobacterium sp. RXM is a molybdenum-containing protein, Duarte, R. O., Reis A. R., Girio F., Moura I., Moura J. J., and Collaco T. A. , Biochem Biophys Res Commun, Jan 3, Volume 230, Number 1, p.30-4, (1997) AbstractWebsite

The formate dehydrogenase (FDH) isolated from cells of Methylobacterium sp. RXM grown on molybdenum-containing mineral medium using methanol as carbon source, was partially purified (at least 90% pure as revealed by SDS-PAGE). The enzyme is unstable under oxygen and all the purification steps were conducted under strict anaerobic conditions. The molecular mass is 75 kDa (gel exclusion 300 kDa). The enzyme was characterized in terms of the kinetic parameters towards different substrates and electron acceptors, pH and temperature dependence and the effect of a wide range of compounds in the enzymatic activity. The EPR spectra of the dithionite reduced sample show, at low temperature (below 20 K), two rhombic EPR signals due to two distinct [Fe-S] centres (centre I at g-values 2.023, 1.951 and 1.933, and centre II at g-values 2.054 and 1.913). At high temperature (around 100 K) another rhombic EPR signal is optimally observed at g-values 2.002, 1.987 and 1.959 and attributed to the molybdenum site. The EPR signals assigned to the iron-sulfur centres show a strong analogy with the aldehyde oxido-reductase from Desulfovibrio gigas known to contain a Mo-pterin and two [2Fe-2S] centres and whose crystallographic structure was recently resolved.

Conversion of desulforedoxin into a rubredoxin center, Yu, L., Kennedy M., Czaja C., Tavares P., Moura J. J., Moura I., and Rusnak F. , Biochem Biophys Res Commun, Feb 24, Volume 231, Number 3, p.679-82, (1997) AbstractWebsite

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)4 center. However, the spectroscopic properties of the center in desulforedoxin differ from rubredoxin. These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated highspin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin.

Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: Isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum), Costa, C., Teixeira M., Legall J., Moura J. J. G., and Moura I. , Journal of Biological Inorganic Chemistry, Apr, Volume 2, Number 2, p.198-208, (1997) AbstractWebsite

An air-stable formate dehydrogenase, an enzyme that catalyzes the oxidation of formate to CO2, was purified from a sulfate-reducing organism, Desulfovibrio desulfuricans ATCC 27774. The enzyme has a molecular mass of approximately 150 kDa (three different subunits: 88, 29 and 16 kDa) and contains three types of redox-active centers: four c-type hemes, nonheme iron arranged as two [4Fe-4S](2+/1+) centers and a molybdenum-pterin site. Selenium was also chemically detected. The enzyme specific activity is 78 units per mg of protein. Mo(V) EPR signals were observed in the native, reduced and formate-reacted states. EPR signals related to the presence of multiple low-spin hemes were also observed in the oxidized state. Upon reduction, an examination of the EPR data under appropriate conditions distinguishes two types of iron-sulfur centers, an [Fe-S] center I (g(max)=2.050, g(med)=1.947, g(min)=1.896) and an [Fe-S] center II (g(max)=2.071, g(med)=1.926, g(min)=1.865). Mossbauer spectroscopy confirmed the presence of four hemes in the low-spin state. The presence of two [4Fe-4S](2+/1+) centers was confirmed, one of these displaying very small hyperfine coupling constants in the +1 oxidation state. The midpoint redox potentials of the enzyme metal centers were also estimated.

The primary structure of the beta subunit of Desulfovibrio desulfuricans (ATCC 27774) NiFe hydrogenase, Franco, R., Calvete J. J., Thole H. H., Raida M., Moura I., and Moura J. J. G. , Protein and Peptide Letters, Apr, Volume 4, Number 2, p.131-138, (1997) AbstractWebsite

The periplasmic [NiFe] hydrogenase isolated from Desulfovibrio (D.) desulfuricans (ATCC 27774) is a heterodimer of a 28 kDa (beta) and a 60 kDa (alpha) subunit. Here we report the complete amino acid sequence of the small (beta) polypeptide chain determined by Edman degradation of proteolytic fragments. Electrospray-ionization mass spectrometry of the native protein confirmed the sequencing results. The sequence is compared with that of D. gigas [NiFe] hydrogenase whose three-dimensional structure has been recently published.

1996
Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Costa, C., Moura J. J., Moura I., Wang Y., and Huynh B. H. , J Biol Chem, Sep 20, Volume 271, Number 38, p.23191-6, (1996) AbstractWebsite

The dissimilatory nitrite reductase from Desulfovibrio desulfuricans ATCC 27774 catalyzes the reduction of nitrite to ammonia. Previous spectroscopic investigation revealed that it is a hexaheme cytochrome containing one high spin ferric heme and five low spin ferric hemes in the oxidized enzyme. The current study uses the high resolution of Mossbauer spectroscopy to obtain redox properties of the six heme groups. Correlating the Mossbauer findings with the EPR data reveals the pairwise spin-spin coupling among four of the heme groups. The other two hemes are found to be magnetically isolated. Reduction with dithionite and reaction with CO further indicate that only the high spin heme is capable of binding small exogenous ligands. These results confirm our previous finding that Desulfovibrio desulfuricans nitrite reductase contains six heme groups and that the high spin ferric heme is the substrate and inhibitor binding site.

Structure of the Ni sites in hydrogenases by X-ray absorption spectroscopy. Species variation and the effects of redox poise, Gu, Z. J., Dong J., Allan C. B., Choudhury S. B., Franco R., Moura J. J. G., Legall J., Przybyla A. E., Roseboom W., Albracht S. P. J., Axley M. J., Scott R. A., and Maroney M. J. , Journal of the American Chemical Society, Nov 13, Volume 118, Number 45, p.11155-11165, (1996) AbstractWebsite

Structural information obtained from the analysis of nickel K-edge X-ray absorption spectroscopic data of [NiFe]hydrogenases from Desulfovibrio gigas, Thiocapsa roseopersicina, Desulfovibrio desulfuricans (ATCC 27774), Escherichia coli (hydrogenase-1), Chromatium vinosum, and Alcaligenes eutrophus H16 (NAD(+)-reducing, soluble hydrogenase), poised in different redox states, is reported. The data allow the active-site structures of enzymes from several species to be compared, and allow the effects of redox poise on the structure of the nickel sites to be examined. In addition, the structure of the nickel site obtained from recent crystallographic studies of the D. gigas enzyme (Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580-587) is compared with the structural features obtained from the analysis of XAS data from the same enzyme. The nickel sites of all but the oxidized (as isolated) sample of A. eutrophus hydrogenase are quite similar. The nickel K-edge energies shift 0.9-1.5 eV to lower energy upon reduction from oxidized (forms A and B) to fully reduced forms. This value is comparable with no more than a one-electron metal-centered oxidation state change. With the exception of T. roseopersicina hydrogenase, most of the edge energy shift (-0.8 eV) occurs upon reduction of the oxidized enzymes to the EPR-silent intermediate redox level (SI). Analysis of the XANES features assigned to 1s-->3d electronic transitions indicates that the shift in energy that occurs for reduction of the enzymes to the SI level may be attributed at least in part to an increase in the coordination number from five to six. The smallest edge energy shift is observed for the T. roseopersicina enzyme, where the XANES data indicate that the nickel center is always six-coordinate. With the exception of the oxidized sample of A. eutrophus hydrogenase, the EXAFS data are dominated by scattering from S-donor ligands at similar to 2.2 Angstrom. The enzyme obtained from T. roseopersicina also shows evidence for the presence of O,N-donor ligands. The data from A. eutrophus hydrogenase are unique in that they indicate that a significant structural change occurs upon reduction of the enzyme. EXAFS data obtained from the oxidized (as isolated) A. eutrophus enzyme indicate that the EXAFS is dominated by scattering from 3-4 N,O-donor atoms at 2.06(2) Angstrom, with contributions from 2-3 S-donor ligands at 2.35(2) Angstrom. This changes upon reduction to a more typical nickel site composed of similar to 4 S-donor ligands at a Ni-S distance of 2.19(2) Angstrom. Evidence for the presence of atoms in the 2.4-2.9 Angstrom distance range is found in most samples, particularly the reduced enzymes (SI, form C, and R). The analysis of these data is complicated by the fact that it is difficult to distinguish between S and Fe scattering atoms at this distance, and by the potential presence of both S and another metal atom at similar distances. The results of EXAFS analysis are shown to be in general agreement with the published crystal structure of the D. gigas enzyme.

Preliminary crystallographic analysis and further characterization of a dodecaheme cytochrome c from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Sieker L. C., Morais J., Carrondo M. A., Lampreia J., Costa C., Moura J. J., Moura I., and Legall J. , Acta Crystallogr D Biol Crystallogr, Nov 1, Volume 52, Number Pt 6, p.1202-8, (1996) AbstractWebsite

Dodecaheme cytochrome c has been purified from Desulfovibrio (D.) desulfuricans ATCC 27774 cells grown under both nitrate and sulfate-respiring conditions. Therefore, it is likely to play a role in the electron-transfer system of both respiratory chains. Its molecular mass (37768 kDa) was determined by electrospray mass spectrometry. Its first 39 amino acids were sequenced and a motif was found between amino acids 32 and 37 that seems to exist in all the cytochromes of the c(3) type from sulfate-reducing bacteria sequenced at present. The midpoint redox potentials of this cytochrome were estimated to be -68, -120, -248 and -310 mV. Electron paramagnetic resonance spectroscopy of the oxidized cytochrome shows several low-spin components with a g(max) spreading from 3.254 to 2.983. Two crystalline forms were obtained by vapour diffusion from a solution containing 2% PEG 6000 and 0.25-0.75 M acetate buffer pH = 5.5. Both crystals belong to monoclinic space groups: one is P2(1), with a = 61.00, b = 106.19, c = 82.05 A, beta = 103.61 degrees, and the other is C2 with a = 152.17, b = 98.45, c = 89.24 A, beta = 119.18 degrees. Density measurements of the P2(1) crystals suggest that there are two independent molecules in the asymmetric unit. Self-rotation function calculations indicate, in both crystal forms, the presence of a non-crystallographic axis perpendicular to the crystallographic twofold axis. This result and the calculated values for the volume per unit molecular weight of the C2 crystals suggest the presence of two or four molecules in the asymmetric unit.

Preliminary crystallographic analysis of the oxidized form of a two mono-nuclear iron centres protein from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Carrondo M. A., Tavares P., Moura J. J., Moura I., Fulop V., Hajdu J., and Legall J. , Protein Sci, Jun, Volume 5, Number 6, p.1189-91, (1996) AbstractWebsite

Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 A and c = 63.2 A; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 A, b = 80.9 A, c = 53.9 A, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function.

Crystal structure of flavodoxin from Desulfovibrio desulfuricans ATCC 27774 in two oxidation states, Romero, A., Caldeira J., Legall J., Moura I., Moura J. J., and Romao M. J. , Eur J Biochem, Jul 1, Volume 239, Number 1, p.190-6, (1996) AbstractWebsite

The crystal structures of the flavodoxin from Desulfovibrio desulfuricans ATCC 27774 have been determined and refined for both oxidized and semi-reduced forms to final crystallographic R-factors of 17.9% (0.8-0.205-nm resolution) and 19.4% (0.8-0.215-nm resolution) respectively. Native flavodoxin crystals were grown from ammonium sulfate with cell constants a = b = 9.59 nm, c=3.37nm (oxidized crystals) and they belong to space group P3(2)21. Semireduced crystals showed some changes in cell dimensions: a = b = 9.51 nm, c=3.35 nm. The three-dimensional structures are similar to other known flavodoxins and deviations are found essentially in the isoalloxazine ring environment. Conformational changes are observed between both redox states and a flip of the Gly61-Met62 peptide bond occurs upon one-electron reduction of the FMN group. These changes influence the redox potential of the oxidized/semiquinone couple. Modulation of the redox potentials is known to be related to the association constant of the FMN group to the protein. The flavodoxin from D. desulfuricans now studied has a large span between E2 (oxidized --> semiquinone) and E1 (semiquinone --> hydroquinone) redox potentials, both these values being substantially more positive within known flavodoxins. A comparison of their FMN environment was made in both oxidation states in order to correlate functional and structural differences.

EPR and Mossbauer spectroscopic studies on enoate reductase, Caldeira, J., Feicht R., White H., Teixeira M., Moura J. J., Simon H., and Moura I. , J Biol Chem, Aug 2, Volume 271, Number 31, p.18743-8, (1996) AbstractWebsite

Enoate reductase (EC 1.3.1.31) is a protein isolated from Clostridium tyrobutyricum that contains iron, labile sulfide, FAD, and FMN. The enzyme reduces the alpha,beta carbon-carbon double bond of nonactivated 2-enoates and in a reversible way that of 2-enals at the expense of NADH or reduced methyl viologen. UV-visible and EPR potentiometric titrations detect a semiquinone species in redox intermediate states characterized by an isotropic EPR signal at g = 2.0 without contribution at 580 nm. EPR redox titration shows two widely spread mid-point redox potentials (-190 and -350 mV at pH 7. 0), and a nearly stoichiometric amount of this species is detected. The data suggest the semiquinone radical has an anionic nature. In the reduced form, the [Fe-S] moiety is characterized by a single rhombic EPR spectrum, observed in a wide range of temperatures (4. 2-60 K) with g values at 2.013, 1.943, and 1.860 (-180 mV at pH 7.0). The gmax value is low when compared with what has been reported for other iron-sulfur clusters. Mossbauer studies reveal the presence of a [4Fe-4S]+2/+1 center. One of the subcomponents of the spectrum shows an unusually large value of quadrupole splitting (ferrous character) in both the oxidized and reduced states. Substrate binding to the reduced enzyme induces subtle changes in the spectroscopic Mossbauer parameters. The Mossbauer data together with known kinetic information suggest the involvement of this iron-sulfur center in the enzyme mechanism.

The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative, Goodfellow, B. J., Tavares P., Romao M. J., Czaja C., Rusnak F., Legall J., Moura I., and Moura J. J. G. , Journal of Biological Inorganic Chemistry, Aug, Volume 1, Number 4, p.341-354, (1996) AbstractWebsite

Desulforedoxin is a simple dimeric protein isolated from Desulfovibrio gigas containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with a 36-amino-acid monomer). H-1 NMR spectra of the oxidized Dx(Fe3+) and reduced Dx(Fe2+) forms were analyzed. The spectra show substantial line broadening due to the paramagnetism of iron. However, very low-field-shifted resonances, assigned to H beta protons, were observed in the reduced state and their temperature dependence analyzed. The active site of Dx was reconstituted with zinc, and its solution structure was determined using 2D NMR methods. This diamagnetic form gave high-resolution NMR data enabling the identification of all the amino acid spin systems. Sequential assignment and the determination of secondary structural elements was attempted using 2D NOESY experiments. However, because of the symmetrical dimer nature of the protein standard, NMR sequential assignment methods could not resolve all cross peaks due to inter- and intra-chain effects. The X-ray structure enabled the spatial relationship between the monomers to be obtained, and resolved the assignment problems. Secondary structural features could be identified from the NMR data; an antiparallel beta-sheet running from D5 to V18 with a well-defined beta-turn around cysteines C9 and C12. The section G22 to T25 is poorly defined by the NMR data and is followed by a turn around V27-C29. The C-terminus ends up near residues V6 and Y7. Distance geometry (DG) calculations allowed families of structures to be generated from the NMR data. A family of structures with a low target function violation for the Dr monomer and dimer were found to have secondary structural elements identical to those seen in the X-ray structure. The amide protons for G4, D5, G13, L11 NH and Q14 NH epsilon amide protons, H-bonded in the X-ray structure, were not seen by NMR as slowly exchanging, while structural disorder at the N-terminus, for the backbone at E10 and for the section G22-T25, was observed. Comparison between the Fe and Zn forms of Dr suggests that metal substitution does not have an effect on the structure of the protein.

Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. , Biochem Biophys Res Commun, Apr 16, Volume 221, Number 2, p.414-21, (1996) AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

1995
Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure, Archer, M., Huber R., Tavares P., Moura I., Moura J. J., Carrondo M. A., Sieker L. C., Legall J., and Romao M. J. , J Mol Biol, Sep 1, Volume 251, Number 5, p.690-702, (1995) AbstractWebsite

The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2 x 36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic R-factor of 16.9% at 1.8 A resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 A, c = 72.22 A (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 A apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin.

Expression of Desulfovibrio gigas desulforedoxin in Escherichia coli. Purification and characterization of mixed metal isoforms, Czaja, C., Litwiller R., Tomlinson A. J., Naylor S., Tavares P., Legall J., Moura J. J., Moura I., and Rusnak F. , J Biol Chem, Sep 1, Volume 270, Number 35, p.20273-7, (1995) AbstractWebsite

The dsr gene from Desulfovibrio gigas encoding the nonheme iron protein desulforedoxin was cloned using the polymerase chain reaction, expressed in Escherichia coli, and purified to homogeneity. The physical and spectroscopic properties of the recombinant protein resemble those observed for the native protein isolated from D. gigas. These include an alpha 2 tertiary structure, the presence of bound iron, and absorbance maxima at 370 and 506 nm in the UV/visible spectrum due to ligand-to-iron charge transfer bands. Low temperature electron paramagnetic resonance studies confirm the presence of a high-spin ferric ion with g values of 7.7, 5.7, 4.1, and 1.8. Interestingly, E. coli produced two forms of desulforedoxin containing iron. One form was identified as a dimer with the metal-binding sites of both subunits occupied by iron while the second form contained equivalent amounts of iron and zinc and represents a dimer with one subunit occupied by iron and the second with zinc.

Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies, Morais, J., Palma P. N., Frazao C., Caldeira J., Legall J., Moura I., Moura J. J., and Carrondo M. A. , Biochemistry, Oct 3, Volume 34, Number 39, p.12830-41, (1995) AbstractWebsite

The three-dimensional X-ray structure of cytochrome c3 from a sulfate reducing bacterium, Desulfovibrio desulfuricans ATCC 27774 (107 residues, 4 heme groups), has been determined by the method of molecular replacement [Frazao et al. (1994) Acta Crystallogr. D50, 233-236] and refined at 1.75 A to an R-factor of 17.8%. When compared with the homologous proteins isolated from Desulfovibrio gigas, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris Miyazaki F, and Desulfomicrobium baculatus, the general outlines of the structure are essentialy kept [heme-heme distances, heme-heme angles, His-His (axial heme ligands) dihedral angles, and the geometry of the conserved aromatic residues]. The three-dimensional structure of D. desulfuricans ATCC 27774 cytochrome c3Dd was modeled on the basis of the crystal structures available and amino acid sequence comparisons within this homologous family of multiheme cytochromes [Palma et al. (1994) Biochemistry 33, 6394-6407]. This model is compared with the refined crystal structure now reported, in order to discuss the validity of structure prediction methods and critically evaluate the steps used to predict protein structures by homology modeling. The four heme midpoint redox potentials were determined by using deconvoluted electron paramagnetic resonance (EPR) redox titrations. Structural criteria (electrostatic potentials, heme ligand orientation, EPR g values, heme exposure, data from protein-protein interaction studies) are invoked to assign the redox potentials corresponding to each specific heme in the three-dimensional structure.

loading