Publications

Export 37 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
A
Archer, M, Carvalho AL, Teixeira S, Moura I, Moura JJG, Rusnak F, Romao MJ.  1999.  Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Science. 8:1536-1545., Number 7 AbstractWebsite
n/a
Aveiro, SS, Freire F, Clayton J, Cameloc M, Carvalho AL, Ferreira GC, Romao MJ, Macedo AL, Goodfellow BJ.  2012.  Structural studies of the p22HBP/SOUL family of heme-binding proteins. Febs Journal. 279:458-458. AbstractWebsite
n/a
B
Branco, PS, Peixoto D, Figueiredo M, Malta G, Roma-Rodrigues C, Batista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM.  2018.  Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero arylidene-9(10H)-anthrone. European Journal of Organic Chemistry. :n/a–n/a. AbstractWebsite

A new and never yet reported hetero arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally attributed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity (Kb = 2.0(± 0.20) x 105 M-1) which is 10x higher than that described for doxorubicin (Kb = 3.2 (±0.23) × 104 M-1). Furthermore, compound 4 quenches the fluorescence emission of GelRed-CT-DNA system with a quenching constant (KSV) of 3.3(±0.3) x 103 M-1 calculated by the Stern-Volmer equation.

Bras, JLA, Cartmell A, Carvalho ALM, Verze G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CMGA, Gilbert HJ.  2011.  Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America. 108:5237-5242., Number 13 AbstractWebsite
n/a
Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2006.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria. Accounts of Chemical Research. 39:788-796., Number 10 AbstractWebsite
n/a
Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2007.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria (vol 39, pg 793, 2006). Accounts of Chemical Research. 40:231-231., Number 3 AbstractWebsite
n/a
C
Coelho, C, Romao MJ.  2015.  Structural and mechanistic insights on nitrate reductases, 2015. Protein Science. 24(12):1901-1911. AbstractWebsite

Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data.

Coelho, C, Muthukumaran J, Santos-Silva T, Romão MJ.  2019.  Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study. Pharmacology Research & Perspectives. 7:e00538., Number 6 AbstractWebsite

Abstract Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.

Coelho, C, Foti A, Hartmann T, Santos-Silva T, Leimk S, Rom MJ.  2015.  Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase, 2015. Nat Chem Biol. 11(10):779-83.Website
D
Dias, JM, Alves T, Bonifacio C, Pereira AS, Trincao J, Bourgeois D, Moura I, Romao MJ.  2004.  Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617. Structure. 12:961-973., Number 6 AbstractWebsite
n/a
Duarte, M, Alves VD, Correia M, Caseiro C, Ferreira LMA, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2023.  Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies, 2023. 224:55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

F
Freire, F, Macedo AL, Aveiro SS, Romao MJ, Carvalho AL, Goodfellow BJ.  2009.  Structural and dynamic characterization of hSOUL, a heme-binding protein. Febs Journal. 276:139-140. AbstractWebsite
n/a
G
Gomes, AS, Ramos H, Gomes S, Loureiro JB, Soares J, Barcherini V, Monti P, Fronza G, Oliveira C, Domingues L, Bastos M, Dourado DFAR, Carvalho AL, Romão MJ, Pinheiro B, Marcelo F, Carvalho A, Santos MMM, Saraiva L.  2020.  SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations, 2020. 1864(1):129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Goncalves, LML, Cunha C, Almeida G, Macieira S, Costa C, Lampreia J, Romao MJ, Moura JJG, Moura I.  2001.  Structural studies on Desulfovibrio desulfuricans ATCC 27774 multiheme nitrite reductase - characterization of the subunits. Journal of Inorganic Biochemistry. 86:316-316., Number 1 AbstractWebsite
n/a
Goodfellow, BJ, Tavares P, Romao MJ, Czaja C, Rusnak F, Legall J, Moura I, Moura JJG.  1996.  The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative. Journal of Biological Inorganic Chemistry. 1:341-354., Number 4 AbstractWebsite
n/a
Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

H
Huber, R, Hof P, Duarte RO, Moura JJG, Moura I, Liu MY, Legall J, Hille R, Archer M, Romao MJ.  1996.  A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proceedings of the National Academy of Sciences of the United States of America. 93:8846-8851., Number 17 AbstractWebsite
n/a
L
Lima, CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F.  2021.  Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins, 2021. Chemistry – A European JournalChemistry – A European Journal. n/a(n/a): John Wiley & Sons, Ltd AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

M
Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today Bio. :100290. AbstractWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.

N
Nóbrega, CS, Carvalho AL, Romão MJ, Pauleta SR.  2023.  Structural Characterization of Neisseria gonorrhoeae Bacterial Peroxidase—Insights into the Catalytic Cycle of Bacterial Peroxidases. International Journal of Molecular Sciences. 24, Number 7 AbstractWebsite

Neisseria gonorrhoeae is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against N. gonorrhoeae.

O
Oliveira, AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC.  2022.  Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis, 2022. ACS Chemical BiologyACS Chemical Biology. 17(7):1901-1909.: American Chemical Society AbstractWebsite

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.

Otrelo-Cardoso, AR, da Silva Correia MA, Schwuchow V, Svergun DI, Romao MJ, Leimkuehler S, Santos-Silva T.  2014.  Structural Data on the Periplasmic Aldehyde Oxidoreductase PaoABC from Escherichia coli: SAXS and Preliminary X-ray Crystallography Analysis. International Journal of Molecular Sciences. 15:2223-2236., Number 2 AbstractWebsite
n/a
Outis, M, Rosa V, Laia CAT, Lima JC, Barroso S, Carvalho AL, Calhorda MJ, Avilés T.  2020.  Synthesis, Crystal Structure, and DFT Study of Two New Dinuclear Copper(I) Complexes Bearing Ar-BIAN Ligands Functionalized with NO2 Groups. European Journal of Inorganic Chemistry. 2020:2900-2911., Number 30 AbstractWebsite

{Two new bis(aryl-imino)-acenaphthene, Ar-BIAN (Ar = 2

P
Palma, AS, Pinheiro B, Liu Y, Takeda Y, Chai W, Ito Y, Romao MJ, Carvalho AL, Feizi T.  2013.  The Structural Basis of the Recognition of Di-glucosylated N-glycans by the ER Lectin Malectin. Glycobiology. 23:1368-1369., Number 11 AbstractWebsite
n/a
Pinheiro, BA, Carvalho AL, Romao MJ, Fontes CM.  2013.  Study of the cohesin-dockerin interaction and its role in the C. thermocellum cellulosome assembly. European Biophysics Journal with Biophysics Letters. 42:S180-S180. AbstractWebsite
n/a