Rondao, R, de Melo JSS, Pina J, Melo MJ, Vitorino T, Parola AJ.
2013.
Brazilwood Reds: The (Photo)Chemistry of Brazilin and Brazilein, 2013. Journal of Physical Chemistry A. 117:10650-10660.
AbstractThe ground and excited state (in the singlet state, S-1) acid-base equilibria, together with the photophysical properties of the two main constituents of brazilwood, brazilin and brazilein, have been investigated in aqueous solutions in the pH range: -1 < pH < 10. Brazilin is the colorless reduced form of brazilein where three ground and three excited state species (BredHn, with n = 2-4 representing the protonated hydroxyl groups) are observed with two corresponding acidity constants: pK(a1) = 6.6 and pK(a2) = 9.4 (pK(a1)(*) = 4.7 and pK(a2)(*) = 9.9, obtained from the Forster cycle). In the case of brazilein, three ground species (pK(a1) = 6.5 and pK(a2) = 9.5) and four excited state species were identified (again from the Forster cycle: pK(a1)(*) = 3.9 and pK(a2)(*) = 9.8). The colorless species (brazilin) presents a high fluorescence quantum yield (phi(F) = 0.33) and competitive radiative channel (k(F) = 1.3 x 10(9) s(-1)) over radiationless processes (k(NR) = 2.6 x 10(9) s(-1)). In contrast to this behavior, brazilein displays a phi(F) value 2 orders of magnitude lower and a dominance of the radiationless decay pathways, which is suggested to be linked to an excited state proton transfer leading to a quinoidal-like structure. This is further supported by time-resolved data (obtained in a ps time domain). The overall data indicates that brazilin is more prone to degradation than brazilein, mainly due to the high efficiency of the racliationless decay channel (likely through internal conversion), which confers a stabilizing inherent characteristic to the latter. In the case of brazilein, the efficiency of the radiationless channel is linked to an excited state intramolecular proton transfer resulting from an excited state equilibrium involving neutral and zwitterionic tautomeric species of this compound. Furthermore, a theoretical study has been performed with the determination of the optimized ground-state and excited molecular geometries for the two compounds together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours and charge densities changes using density functional theory calculations. These were found to corroborate differences in acidity in the ground and excited states.
Avo, J, Martins S, Parola AJ, Lima JC, Branco PS, Ramalho JPP, Pereira A.
2013.
A Family of Styrylcoumarins: Synthesis, Spectroscopic, Photophysical and Photochemical Properties, 2013. Chempluschem. 78:789-792.
Abstractn/a
Gago, S, Fonseca IM, Parola AJ.
2013.
Hybrid mesoporous silica grafted with photoisomerizable 2-hydroxychalcones, 2013. Microporous and Mesoporous Materials. 180:40-47.
AbstractHybrid photochromic mesoporous materials based on MCM-41 and SBA-15 were synthesized by covalent attachment of 3'-butoxy-7-hydroxyflavylium (Fl-OH) and 3'-butoxy-7-metoxyflavylium (Fl-OCH3) hydrogensulfates. The pristine materials were initially grafted with 3-chloropropyl groups, reacted with 3'-hydroxyacetophenone and finally condensed with appropriate salicylaldehydes to yield the new hybrids MCM-41-Fl-OH and SBA-15-Fl-OCH3. The materials were characterized by powder X-ray diffraction, N-2 adsorption, solid-state C-13 CPMAS NMR spectroscopy, and thermogravimetric and elemental analyses, which confirm the successful covalent bonding of the flavylium moieties with loadings of 16.90 +/- 0.05% and 11.78 +/- 0.04% (w/w) for MCM-41-Fl-OH and SBA-15-OCH3, respectively. Flavylium compounds originate in solution a multiequilibria reaction network than can be actuated by pH and light, defining pH-coupled photochromic systems. The new hybrids show pH-dependent reflectance spectra resembling those observed in solution, but shifted to higher pH ranges, indicating a higher stability of the grafted flavylium cations. Irradiation of these materials equilibrated at adequate pH values where the photoisomerizable trans-chalcones predominate shows formation of the respective flavylium cations that recover back to the initial compositions upon standing in the dark, leading these new organic-inorganic hybrids as pH-dependent photochromic materials. (C) 2013 Elsevier Inc. All rights reserved.
Leydet, Y, Batat P, Jonusauskas G, Denisov S, Lima JC, Parola AJ, McClenaghan ND, Pina F.
2013.
Impact of Water on the Cis-Trans Photoisomerization of Hydroxychalcones, 2013. Journal of Physical Chemistry A. 117:4167-4173.
AbstractThe photochromism of a 2-hydroxychalcone has been studied in CH3CN and H2O/CH3OH (1/1, v/v), as well as in analogous deuterated solvents using steady-state (UV-vis absorption, H-1 and C-13 NMR) and time-resolved (ultrafast transient absorption and nanosecond flow flash photolysis) spectroscopies. Whereas the irradiation of trans-chalcone (Ct) under neutral pH conditions leads to the formation of the same final chromene derivative (B) in both media, two distinct photochemical mechanisms are proposed in agreement with thermodynamic and kinetic properties of the chemical reaction network at the ground state. Following light excitation, the first steps are identical in acetonitrile and aqueous solution: the Franck-Condon excited state rapidly populates the trans-chalcone singlet excited state (1)Ct* (LE), which evolves into a twisted state P-1*. This excited state is directly responsible for the photochemistry in acetonitrile in the nanosecond time scale (16 ns) leading to the formation of cis-chalcone (Cc) through a simple isomerization process. The resulting cis-chalcone evolves into the chromene B through a tautomerization process in the ground state (tau= 10 ms). Unlike in acetonitrile, in H2O/CH3OH (1/1, v/v), the P* state becomes unstable and evolves into a new state attributed to the tautomer (1)Q*. This state directly evolves into B in one photochemical step through a consecutive ultrafast tautomerization process followed by electrocyclization. This last case represents a new hypothesis in the photochromism of 2-hydroxychalcone derivatives.
Petrov, V, Diniz AM, Cunha-Silva L, Parola AJ, Pina F.
2013.
Kinetic and thermodynamic study of 2 '-hydroxy-8-methoxyflavylium. Reaction network interconverting flavylium cation and flavanone, 2013. Rsc Advances. 3:10786-10794.
Abstract2'-Hydroxyflavylium and 2'-hydroxyflavanone derivatives can be interconverted by a precise sequence of pH jumps, through the respective intermediate (mono) ionized trans-chalcones. In acidic and neutral media, the well known network of chemical reactions involving flavylium cation, quinoidal base, hemiketal, and cis and trans chalcones is established. In the pH range 8 < pH < 10, the chalcone (Ct) deprotonates and evolves to the formation of a flavanone (F). At higher pH values, the di-ionized trans-chalcone is the stable species, formed from the flavylium cation. Acidification of the di-ionized trans-chalcone gives the flavylium cation or the flavanone, via the mono-ionized trans-chalcone, respectively at pH < 1 and pH approximate to 9. In contrast with the chalcones, the flavanone once formed is stable even in acidic media. However, under strongly basic conditions, it leads back to the di-ionized trans-chalcone, the most stable species at more basic pH values, and the reactions leading to Ct(-), F, Ct(2-), Ct(-), constitute a one direction cycle for interconversion of these species.
Geng, Y, Seč D, Almeida PL, Lavrentovich OD, Žumer S, Godinho MH.
2013.
Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres, 2013. Soft Matter. 9(33):7928-7933.: The Royal Society of Chemistry
AbstractLiquid crystals in confined geometries exhibit numerous complex structures often including topological defects that are controlled by the nematic elasticity, chirality and surface anchoring. In this work, we study the structures of cholesteric droplets pierced by cellulose fibres with planar anchoring at droplet and fibre surfaces. By varying the temperature we demonstrate the role of twisting power and droplet diameter on the equilibrium structures. The observed structures are complemented by detailed numerical simulations of possible director fields decorated by defects. Three distinct structures, a bipolar and two ring configurations, are identified experimentally and numerically. Designing cholesteric liquid crystal microdroplets on thin long threads opens new routes to produce fibre waveguides decorated with complex microresonators.
Coutinho, ML, Miller AZ, Gutierrez-Patricio S, Hernandez-Marine M, Gomez-Bolea A, Rogerio-Candelera MA, Philips AJL, Jurado V, Saiz-Jimenez C, Macedo MF.
2013.
Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal), 2013. International Biodeterioration and Biodegradation. 84:322-332.
Abstractn/a
Calogero, G, Sinopoli A, Citro I, Di Marco G, Petrov V, Diniz AM, Parola AJ, Pina F.
2013.
Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells, 2013. Photochemical & Photobiological Sciences. 12:883-894.
AbstractSeven flavylium salt dyes were employed for the first time as sensitizers for dye-sensitized solar cells (DSSCs). The theoretical and experimental wavelengths of the maximum absorbances, the HOMO and LUMO energy levels, the coefficients, the oscillator strengths and the dipole moments are calculated for these synthetic dyes. The introduction of a donor group in the flavylium molecular structure was investigated. Photophysical and photoelectrochemical measurements showed that some of these synthetic analogues of anthocyanins are very promising for DSSC applications. The best performance was obtained by a DSSC based on the novel compound 7-(N,N-diethylamino)-3',4'-dihydroxyflavylium which produced a 2.15% solar energy-to-electricity conversion efficiency, under AM 1.5 irradiation (100 mW cm(-2)) with a short-circuit current density (J(sc)) of 12.0 mA cm(-2), a fill factor of 0.5 and an open-circuit voltage (V-oc) of 0.355 V; its incident photocurrent efficiency of 51% at the peak of the visible absorption band of the dye is remarkable. Our results demonstrated that the substitution of a hydroxylic group with a diethylamine unit in position 7 of ring A of the flavylium backbone expanded the pi-conjugation in the dye and thus resulted in a higher absorption in the visible region and is advantageous for effective electron injection from the dye into the conduction band of TiO2.
Pacheco, MF, Pereira AI, Branco LC, Parola AJ.
2013.
Varnish removal from paintings using ionic liquids, 2013. Journal of Materials Chemistry A. 1:7016-7018.
AbstractThe possibility of replacing volatile and toxic organic solvents by ionic liquids (ILs) could contribute to safer procedures for conservation and restoration. This study introduces the use of ILs in varnish removal from paintings. The efficacy of this new procedure was assessed by applying different types of ILs in mock-ups of several painting materials and varnishes. The removal of IL residues from the surface of paintings was assessed mainly by FTIR-ATR. The application of ILs to a real painting is illustrated.
Geng, Y, Almeida PL, Feio GM, Figueirinhas JL, Godinho MH.
2013.
Water-Based Cellulose Liquid Crystal System Investigated by Rheo-NMR, 2013. MacromoleculesMacromolecules. 46(11):4296-4302.: American Chemical Society
AbstractWater-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system’s structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s–1 where investigated using a Taylor–Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system’s structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s–1 where investigated using a Taylor–Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.
Silva, A, Luis D, Santos S, Silva J, Mendo AS, Coito L, Silva TF, da Silva MFG, Martins LM, Pombeiro AJ, Borralho PM, Rodrigues CM, Cabral MG, Videira PA, Monteiro C, Fernandes AR.
2013.
Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: a comparative proteomic approach. Drug Metabol Drug Interact. 28(3):167-76.
Baptista, AC, Ferreira I, Borges J.
2013.
Cellulose-based bioelectronic devices. Cellulose - Medical, Pharmaceutical and Electronic Applications. (
Theo van de Ven, Louis Godbout, Eds.)., Number 4: InTech