Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Chagas, R, Gericke M, Ferreira RB, Heinze T, Ferreira LM.  2020.  Synthesis and characterization of dicarboxymethyl cellulose, MAR. CELLULOSE. 27:1965-1974., Number 4 Abstract
n/a
Restani, {RB }, Pires {RF }, Baptista {PV}, Fernandes {AR}, Casimiro T, Bonifácio {VDB }, Aguiar-Ricardo A.  2020.  Nano-in-Micro Sildenafil Dry Powder Formulations for the Treatment of Pulmonary Arterial Hypertension Disorders: The Synergic Effect of POxylated Polyurea Dendrimers, PLGA, and Cholesterol, jun. Particle and Particle Systems Characterization. 37, Number 6: Wiley-VCH Verlag Abstract

POXylated polyurea dendrimer nanoparticles (PUREG4OOx48) are loaded with sildenafil (SDF) by a supercritical carbon dioxide–assisted (scCO2) impregnation. Further supercritical CO2-assisted spray drying (SASD) leads to hybrid nano-in-micro dry powder formulations that are investigated aiming at efficient pulmonary delivery of SDF in pulmonary arterial hypertension treatment. This is the first report of the production of poly(D,L-lactide-co-glycolide)-cholesterol (PLGA-Chol) microparticles processed by SASD. The optimized formulation of nano-in-microparticles is composed of PLGA, Chol, and PUREG4OOx48, loaded with SDF solutions in a 77:23 ratio (PLGA-Chol:dendrimer, w/w). The dry powders are fully characterized and found to be highly biodegradable and biocompatible, and the SDF release profile evaluates under different pH values. The median mass average diameter (MMAD) of the nano-in-micro systems varies between 2.57 and 5 µm and the fine particle fraction (FPF) between 36% and 29% for PUREG4OMeOx48[PLGA-Chol] and PUREG4OEtOx48[PLGA-Chol], respectively. The data validate the potential use of these new formulations in inhalation therapy. In vitro studies are also carried out in order to evaluate the effect of the free drug in cell viability and formulations cytotoxicity.

Roma-Rodrigues, C, Malta G, Peixoto D, Ferreira {LM }, Baptista {PV}, Fernandes {AR}, Branco {PS }.  2020.  Synthesis of new hetero-arylidene-9(10H)-anthrone derivatives and their biological evaluation, jun. Bioorganic Chemistry. 99: Elsevier Science B.V., Amsterdam. Abstract

New hetero-arylidene-9(10H)-anthrone derivatives (1) were synthesized from reaction of 1,2-dimethyl-3-alkyl imidazolium salts (2) and 9-anthracenecarboxaldehyde. Ion exchange of the anion with dioctyl sulfosuccinate and lithium bis(trifluoromethanesulfonyl)imide led to the preparation of other derivatives. The antiproliferative effect of the compounds was evaluated in human ovarian (A2780) and colorectal (HCT116) carcinoma cell lines and in normal primary human fibroblasts. Compound 1 presented an antiproliferative effect related to the imidazolium pattern of substitution with compounds having a decyl group at the R-position (1c and 3c) showing the highest cytotoxic activities in all cell lines independently of the counter ion. Compounds 1b and 1c internalize A2780 cancer cells via a passive or an active transport, respectively, inducing A2780 cell death via an extrinsic apoptosis (1b) or intrinsic apoptosis and oncosis (1c). The localization of both compounds in the cytoplasm coupled to the absence of reactive oxygen species (ROS) induction suggest that the mechanisms of toxicity might be different than those of other anthracyclines currently used in chemotherapy.

Roma-Rodrigues, C, Malta G, Peixoto D, Ferreira LM, Baptista P, Fernandes AR, Branco PS.  2020.  Synthesis of new hetero-arylidene-9(10H)-anthrone derivatives and their biological evaluation, JUN. BIOORGANIC CHEMISTRY. 99 Abstract
n/a
Amendoeira, A, García {LR}, Fernandes {AR}, Baptista {PV}.  2020.  Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics, jan. Advanced Therapeutics. 3, Number 1: Wiley-Blackwell Publishing Ltd Abstract

Cancer is one of the leading causes of death in the world. To challenge this epidemic, there are growing demands for the development of new advanced and targeted therapeutics capable of effectively tackling cancer cells with improved selectivity. Nanomedicine has put forward several innovative therapeutics toward improving therapeutic efficacy while decreasing the deleterious side effects of current chemotherapy. Multifunctional gold nanoparticles (AuNPs) have been at the core of a plethora of advanced therapeutic strategies that provide selective targeting with their unique optical properties, capable to interact with the light of specific wavelength to deliver therapy with tremendous spatiotemporal precision. AuNPs have been exploited as photodynamic and photothermal therapeutic agents alone or in combination with other cancer treatment modalities with other cancer applications. Due to their exceptional physicochemical properties, they have been proven efficacious allies for photodynamic therapy and for photothermal therapy regimens. Herein, the rapidly progressing literature related to the use of these promising strategies against cancer is discussed, highlighting their possible future clinical translation.

Oliveira, {BB }, Fernandes {AR}, Baptista {PV}.  2020.  Nanotheranostics in Gene Therapy, jan. Advances in Cancer Nanotheranostics for Experimental and Personalized Medicine. :82–115., United Kingdom: Bentham Science Publishers Abstract

The continuous advances in molecular genetics have prompt for a wealth of tools capable to modulate genome and the corresponding gene expression. These innovative technologies have broadened the range of possibilities for gene therapy, either to decrease expression of malignant genes and mutations or edition of genomes for correction of errors. These strategies rely on the delivery of therapeutic nucleic acids to cells and tissues that must overcome several biological barriers. Indeed, a key element for the success of any gene therapy formulation is the carrier agent capable to deliver the therapeutic nucleic acid moieties to a specific target and promote efficient cellular uptake, while preventing deleterious off-target effects and degradation by endogenous nucleases. The initial vectorization strategies proved to be rather immunogenic, limited in the amount of genetic material that can be packed and raised severe toxicity concerns. Nowadays, a new generation of nanotechnology-based gene delivery systems are making an impact on the way we use therapeutic nucleic acids. These nanovectorization platforms have been developed so as to show low immunogenicity, low toxicity, ease of assembly and scale-up with higher loading capacity. Some of these nanoscale systems have also allowed for controlled release system and for the simultaneous capability of monitorization of effect - nanotheranostics. Herein, we provide a review on the variety of gene delivery vectors and platforms at the nanoscale.

Gago, D, Chagas R, Ferreira LM, Velizarov S, Coelhoso I.  2020.  A Novel Cellulose-Based Polymer for Efficient Removal of Methylene Blue, JAN. MEMBRANES. 10, Number 1 Abstract
n/a
Martins, C, Rodrigo {AP }, Madeira C, D'Ambrosio M, Goncalves C, Parola {AJ }, Grosso {AR }, Baptista {PV }, Fernandes {AR }, Costa {PM }.  2020.  Porphyrin Pigments in Polychaeta: Explorations on the Evolution of Haem Metabolism in Marine Eumetazoans, jan. 18 Abstract
n/a
Rippel, R, Pinheiro L, Lopes M, Lourenco A, Ferreira LM, Branco PS.  2020.  Synthetic Approaches to a Challenging and Unusual Structure-An Amino-Pyrrolidine Guanine Core, FEB 2. MOLECULES. 25, Number 4 Abstract
n/a
Kordestani, N, Rudbari {HA}, Fernandes {AR}, Raposo {LR }, Baptista {PV}, Ferreira {DA }, Bruno G, Bella G, Scopelliti R, Braun {JD }, Herbert {DE }, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, feb. ACS Combinatorial Science. 22:89–99., Number 2: ACS - American Chemical Society Abstract

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 μM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Branco, S, Mateus EP, Richter Gomes da Silva MD, Mendes D, Araujo Pereira MM, Schutz S, Paiva MR.  2020.  Identification of pheromone candidates for the eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), FEB. JOURNAL OF APPLIED ENTOMOLOGY. 144:41-53., Number 1-2 Abstract

The eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), is a major pest of eucalyptus plantations worldwide. To date, no pheromones have been identified for this species, despite their valuable potential as tools in monitoring or control strategies. Here we report the detection and identification of pheromones candidates of G. platensis. The weevil's volatile compounds were collected by solid phase micro extraction (SPME) and monolithic material sorption extraction (MMSE). Using Gas Chromatography coupled to Mass Spectrometry (GC/MS) analysis, eleven insect specific compounds were detected and identified: verbenene, cis-verbenol, trans-verbenol, verbenone, 2-oxo-1,8-cineole, 9-hydroxy-1,8-cineole, 2-alpha-hydroxy-1,8-cineole, 3-oxo-1,8-cineole, 2-beta-hydroxy-1,8-cineole, 3-alpha-hydroxy-1,8-cineole and 7-hydroxy-1,8-cineole. Three of these compounds, verbenene, cis-verbenol and trans-verbenol, were shown to be male-specific. Antennal sensitivity towards ten compounds emitted by G. platensis was detected using Gas Chromatography-Mass Spectrometry/Electroantennographic Detection (GC-MS/EAD). Extracts from virgin males proved to be attractive to virgin females in olfactometer bioassays. Further behavioural bioassays showed that both virgin females and virgin males were attracted to the male-specific compound cis-verbenol and that virgin females were attracted to trans-verbenol. Verbenone was attractive to mated females. Regarding 2-alpha-hydroxy-1.8-cineole and 2-oxo-1,8-cineole, which are produced by both sexes, the alcohol was attractive to virgin males and both the alcohol and the ketone were repellant to mated females. This is, to our knowledge, the first identification of pheromones candidates in Gonipterus spp. and also the first evidence of cineole metabolites acting as semiochemicals.

Fernandes, {AR}, c}a-Martins IM{\c, Santos {MFA }, Raposo {LR }, Mendes R, Marques J, Romão {CC }, Romão {MJ}, Santos-Silva T, Baptista {PV}.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, feb. ACS Biomaterials Science and Engineering. 6:1090–1101., Number 2: ACS - American Chemical Society Abstract

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

s}il{\u a}, MB{\c, a}b{\u a}caru AT{\u, s}sat VM{\c, Vasile {BS}tefan}{\c, Nea{\c s}u {IA}, Pinheiro T, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Matos {AP}, Marques {FM}.  2020.  Size-Dependent Biological Activities of Fluorescent Organosilane-Modified Zinc Oxide Nanoparticles, feb. Journal of biomedical nanotechnology. 16:137–152., Number 2: American Scientific Publishers Abstract

Surface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2-10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3-4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.

Pacheco, RM, Jacinto JP, Penas D, Calmeiro T, Almeida A, Colaco M, Fortunato E, Jones NC, Hoffmann, V S, Pereira MMA, Tavares P, Pereira AS.  2020.  Supramolecular protein polymers using mini-ferritin Dps as the building block, DEC 7. ORGANIC & BIOMOLECULAR CHEMISTRY. 18:9300-9307., Number 45 Abstract

A missense mutant of a Dps protein (DNA-binding protein from starved cells) from Marinobacter hydrocarbonoclasticus was used as a building block to develop a new supramolecular assembly complex which enhances the iron uptake, a physiological function of this mini-ferritin. The missense mutation was conducted in an exposed and flexible region of the N-terminal, wherein a threonine residue in position 10 was replaced by a cysteine residue (DpsT10C). This step enabled a click chemistry approach to the variant DpsT10C, where a thiol-ene coupling occurs. Two methods and two types of linker were used resulting in two different mini-ferritin supramolecular polymers, which have maintained secondary structure and native iron uptake physiological function. Electrophoretic assays and mass spectrometry were utilized to confirm that both functionalization and coupling reactions occured as predicted. The secondary structure has been investigated by circular dichroism and synchrotron radiation circular dichroism. Size and morphology were obtained by dynamic light scattering, size exclusion chromatography and atomic force microscopy, respectively. The iron uptake of the synthesized protein polymers was confirmed by UV-Vis spectroscopy loading assays.

Ferreira, D, Fontinha D, Martins C, Pires D, Fernandes {AR}, Baptista {PV}.  2020.  Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics, aug. Molecules. 25, Number 15: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Cancer remains a complex medical challenge and one of the leading causes of death worldwide. Nanomedicines have been proposed as innovative platforms to tackle these complex diseases, where the combination of several treatment strategies might enhance therapy success. Among these nanomedicines, nanoparticle mediated delivery of nucleic acids has been put forward as key instrument to modulate gene expression, be it targeted gene silencing, interference RNA mechanisms and/or gene edition. These novel delivery systems have strongly relied on nanoparticles and, in particular, gold nanoparticles (AuNPs) have paved the way for efficient delivery systems due to the possibility to fine-tune their size, shape and surface properties, coupled to the ease of functionalization with different biomolecules. Herein, we shall address the different molecular tools for modulation of expression of oncogenes and tumor suppressor genes and discuss the state-of-the-art of AuNP functionalization for nucleic acid delivery both in vitro and in vivo models. Furthermore, we shall highlight the clinical applications of these spherical AuNP based conjugates for gene delivery, current challenges, and future perspectives in nanomedicine.

Maximo, P, Ferreira LM, Branco PS, Lourenco A.  2020.  Invasive Plants: Turning Enemies into Value, AUG. MOLECULES. 25, Number 15 Abstract

In this review, a brief description of the invasive phenomena associated with plants and its consequences to the ecosystem is presented. Five worldwide invasive plants that are a threat to Portugal were selected as an example, and a brief description of each is presented. A full description of their secondary metabolites and biological activity is given, and a resume of the biological activity of extracts is also included. The chemical and pharmaceutical potential of invasive species sensu lato is thus acknowledged. With this paper, we hope to demonstrate that invasive species have potential positive attributes even though at the same time they might need to be controlled or eradicated. Positive attributes include chemical and pharmaceutical properties and developing these could help mitigate the costs of management and eradication.

Mendes, MJ.  2020.  Colloidal lithography for transparent electronics and light trapping in thin film flexible solar cells, 3-4 Nov.. Encontro Ciência 2020. , Lisbon, Portugal: Fundação para a Ciência e a Tecnologia
Almeida, APC, Oliveira J, Fernandes SN, Godinho MH, Canejo JP.  2020.  All-cellulose composite membranes for oil microdroplet collection, 2020. 27(8):4665-4677. AbstractWebsite

Oil spills on ocean waters represent a major threat to marine ecosystems. A significant part of the spilled oil is dispersed in microdroplets that are not recovered by traditional oil-removing methods. In this work, we report on the manufacture of cellulose acetate (CA) electrospun non-woven membranes, stamped with different cellulose nanocrystal (CNC) patterns. We demonstrate the use of the membranes produced as selective oil microdroplets removal from water emulsions with an efficiency up to 80%. Screenprinting was used to imprint different CNC designs on the CA surface membranes. To promote the adhesion between the CNCs and the CNCs with the CA fibers the membrane was subjected to a thermal and chemical treatments. Oil droplets were collected under water in the oleophilic CNC pattern while the water could flow through the hydrophilic CA electrospun non-woven membrane.

Kordestani, N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, 2020. ACS Comb Sci. 22(2):89-99. AbstractWebsite

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 muM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Portela, PC, Dantas JM, Salgueiro CA.  2020.  Backbone, side chain and heme resonance assignment of the triheme cytochrome PpcA from Geobacter metallireducens in the oxidized state, 2020. Biomol NMR Assign. 14(1):31-36. AbstractWebsite

The bacterium Geobacter metallireducens is capable of transferring electrons to the cell exterior, a process designated extracellular electron transfer. This mechanism allows the microorganism to reduce extracellular acceptors such as Fe(III) (hydr)oxides and water toxic and/or radioactive contaminants including Cr(VI) and U(VI). It is also capable of oxidizing waste water aromatic organic compounds being an important microorganism for bioremediation of polluted waters. Extracellular electron transfer also allows electricity harvesting from microbial fuel cells, a promising sustainable form of energy production. However, extracellular electron transfer processes in this microorganism are still poorly characterized. The triheme c-type cytochrome PpcA from G. metallireducens is abundant in the periplasm and is crucial for electron transfer between the cytoplasm and the cell’s exterior. In this work, we report near complete assignment of backbone, side chain and heme resonances for PpcA in the oxidized state that will permit its structure determination and identification of interactions with physiological redox partners.

Ferreira, P, Cerqueira NSMFA, Fernandes PA, Romão MJ, Ramos MJ.  2020.  Catalytic Mechanism of Human Aldehyde Oxidase, 2020. ACS CatalysisACS Catalysis. 10(16):9276-9286.: American Chemical Society AbstractWebsite

The mechanism of oxidation of N-heterocycle phthalazine to phthalazin-1(2H)-one and its associated free energy profile, catalyzed by human aldehyde oxidase (hAOX1), was studied in atomistic detail using QM/MM methodologies. The studied reaction was found to involve three sequential steps: (i) protonation of the substrate’s N2 atom by Lys893, (ii) nucleophilic attack of the hydroxyl group of the molybdenum cofactor (Moco) to the substrate, and (iii) hydride transfer from the substrate to the sulfur atom of the Moco. The free energy profile that was calculated revealed that the rate-limiting step corresponds to hydride transfer. It was also found that Lys893 plays a relevant role in the reaction, being important not only for the anchorage of the substrate close to the Moco, but also in the catalytic reaction. The variations of the oxidation state of the molybdenum ion throughout the catalytic cycle were examined too. We found out that during the displacement of the products away from the Moco, the transfer of electrons from the catalytic site to the FAD site was proton-coupled. As a consequence, the most favorable and fastest pathway for the enzyme to complete its catalytic cycle was that with MoV and a deprotonated SH ligand of the Moco with the FAD molecule converted to its semiquinone form, FADH•.The mechanism of oxidation of N-heterocycle phthalazine to phthalazin-1(2H)-one and its associated free energy profile, catalyzed by human aldehyde oxidase (hAOX1), was studied in atomistic detail using QM/MM methodologies. The studied reaction was found to involve three sequential steps: (i) protonation of the substrate’s N2 atom by Lys893, (ii) nucleophilic attack of the hydroxyl group of the molybdenum cofactor (Moco) to the substrate, and (iii) hydride transfer from the substrate to the sulfur atom of the Moco. The free energy profile that was calculated revealed that the rate-limiting step corresponds to hydride transfer. It was also found that Lys893 plays a relevant role in the reaction, being important not only for the anchorage of the substrate close to the Moco, but also in the catalytic reaction. The variations of the oxidation state of the molybdenum ion throughout the catalytic cycle were examined too. We found out that during the displacement of the products away from the Moco, the transfer of electrons from the catalytic site to the FAD site was proton-coupled. As a consequence, the most favorable and fastest pathway for the enzyme to complete its catalytic cycle was that with MoV and a deprotonated SH ligand of the Moco with the FAD molecule converted to its semiquinone form, FADH•.

Terao, M, Garattini E, Romão MJ, Leimkühler S.  2020.  Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes, 2020. Journal of Biological ChemistryJournal of Biological Chemistry. 295(16):5377-5389.: Elsevier AbstractWebsite

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.

Oliveira, B, Veigas B, Fernandes AR, Aguas H, Martins R, Fortunato E, Baptista PV.  2020.  Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers, 2020. Sensors (Basel). 20(6) AbstractWebsite

Microfluidic (MF) advancements have been leveraged toward the development of state-of-the-art platforms for molecular diagnostics, where isothermal amplification schemes allow for further simplification of DNA detection and quantification protocols. The MF integration with loop-mediated isothermal amplification (LAMP) is today the focus of a new generation of chip-based devices for molecular detection, aiming at fast and automated nucleic acid analysis. Here, we combined MF with droplet digital LAMP (ddLAMP) on an all-in-one device that allows for droplet generation, target amplification, and absolute quantification. This multilayer 3D chip was developed in less than 30 minutes by using a low-cost and extremely adaptable production process that exploits direct laser writing technology in "Shrinky-dinks" polystyrene sheets. ddLAMP and target quantification were performed directly on-chip, showing a high correlation between target concentration and positive droplet score. We validated this integrated chip via the amplification of targets ranging from five to 500,000 copies/reaction. Furthermore, on-chip amplification was performed in a 10 microL volume, attaining a limit of detection of five copies/microL under 60 min. This technology was applied to quantify a cancer biomarker, c-MYC, but it can be further extended to any other disease biomarker.

Germano, GCM, Machado YDR, Martinho L, Fernandes SN, Costa AMLM, Pecoraro E, Gomes ASL, Carvalho ICS.  2020.  Flexible random lasers in dye-doped bio-degradable cellulose nanocrystalline needles, 2020. Journal of the Optical Society of America BJournal of the Optical Society of America B. 37(1):24-29.: OSA AbstractWebsite

In this work, we developed and investigated a random laser based on rhodamine6G (Rh6G) in ethylene glycol (EG) solution with varying cellulose nanocrystalline (CNC) needles as scatterers in the lasing media. Besides the suspension-in-cuvette scheme, an alternative configuration was also employed: a dye-CNC flexible self-supported thick-film (70 µm) random laser made by drop casting of the ${\rm CNCs}+{\rm Rh6G}+{\rm hydroxypropyl}$CNCs+Rh6G+hydroxypropyl cellulose suspension. In relation to conventional scatterers, the biodegradable cellulose nanocompounds showed a comparable reduction in both the spectral full width at half-maximum and the energy threshold values, with an optimal concentration of 5 mg [CNC]/ml[EG] in suspension. Its performance was also compared with other cellulose-based random lasers, presenting advantages for some parameters. The flexible film configuration showed similar results, but contained 10% less Rh6G than the suspension.

Vidossich, P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M.  2020.  Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity, 2020. ACS CatalysisACS Catalysis. 10(23):13825-13833.: American Chemical Society AbstractWebsite

Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.