Export 531 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Tiago, G, Restolho J, Forte A, Colaco R, Branco LC, Saramago B.  Submitted.  {Novel ionic liquids for interfacial and tribological applications}, {MAY 5}. {COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS}. {472}:{1-8}. Abstract
n/a
Zhao, Y, He L, Tang N, Qin S, Tao G-H, Liang F-X.  Submitted.  {Structures and Properties of Luminescent Pentanitratoeuropate(III) Ionic Liquids}, {JAN}. {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY}. :{542-551}., Number {3} Abstract
n/a
Tron, A, Gago S, McClenaghan ND, Parola AJ, Pina F.  Submitted.  {A blue 4 `,7-diaminoflavylium cation showing an extended pH range stability}, {APR 7}. {PHYSICAL CHEMISTRY CHEMICAL PHYSICS}. {18}:{8920-8925}., Number {13} Abstract
n/a
Thales, P, Vale TM, Dias RJ, Lourenço JM.  Submitted.  Empowering a Relational Database with Lazy State Determination.
Nascimento, SMC, Linhares JMM, Joao CAR, Amano K, Montagner C, Melo MJ, Vilarigues M.  Submitted.  {Estimating the Colors of Paintings}. {COMPUTATIONAL COLOR IMAGING, CCIW 2015}. {9016}({Tremeau, A, Schettini, R., Tominaga, S}, Eds.).:{236-242}. Abstract
n/a
Tiago, GAO, Ribeiro APC, Mahmudov KT, Guedes da Silva FMC, Branco LC, Pombeiro AJL.  Submitted.  {Mononuclear copper(II) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium}. {RSC ADVANCES}. {6}:{83412-83420}., Number {86} Abstract
n/a
Pikramenou, Z, Weinstein J, Pan Q, Lewis F, Bassani DM, Wuerthner F, Moucheron C, Slota M, Diaz-Moscoso A, Karlsson J, Basilio N, Adams D, Scandola F, Bohne C, Lemon C, Campagna S, Rohacova J, Ohashi K, Ploetz P-A, Monti F, Kelly JM, Keane P, Gibson E, Lemercier G, Ruggi A, Cucinotta F, Gust D, Bradberry S, Vos J, Pistolis G, Mauro M, Tuite E, De Cola L, Ceroni P, Maneiro M, Galoppini E, Gunnlaugsson T.  Submitted.  {Self-organization of photo-active nanostructures: general discussion}. {FARADAY DISCUSSIONS}. {185}:{529-548}. Abstract
n/a
2025
Almeida, A, Turner DL, Silva MA, Salgueiro CA.  2025.  New insights in uranium bioremediation by cytochromes of the bacterium G. uraniireducens. Journal of Biological Chemistry. 301(2):108090. AbstractWebsite

The bacterium Geotalea uraniireducens, commonly found in uranium-contaminated environments, plays a key role in bioremediation strategies by converting the soluble hexavalent form of uranium (UVI) into less soluble forms (e.g. UIV.). While most of the reduction and concomitant precipitation of uranium occur outside the cells, there have been reports of important reduction processes taking place in the periplasm. In any case, the triheme periplasmic cytochromes are crucial players, either by ensuring an effective interface between the cell´s interior and exterior or by directly participating in the reduction of the metal. Therefore, understanding the functional mechanism of the highly abundant G. uraniireducens’ triheme cytochromes is crucial to assist the elucidation on the respiratory pathways in this bacterium. In this work, a detailed functional characterization of the triheme cytochromes PpcA and PpcB from G. uraniireducens was conducted using NMR and visible spectroscopy techniques. Despite sharing high amino acid sequence and structural homology with their counterparts from G. sulfurreducens, the results obtained showed that the heme reduction potential values are less negative, the order of oxidation of the hemes is distinct, and the redox and redox-Bohr network of interactions revealed unprecedented functional mechanisms of the G. uraniireducens cytochromes. In these cytochromes, the reduction potential values of the three heme groups are much more similar, hence covering a narrow range of values, features that facilitate the directional electron flow from the inner membrane, thereby favouring the optimal reduction of uranium.

Gabirondo, E, Saif HM, Alves VD, Crespo JG, Tomé LC, Pawlowski S.  2025.  Deep eutectic solvent flow electrodes for high-voltage desalination via flow electrode capacitive deionisation. Desalination. 614:119218. AbstractWebsite

This study pioneers the application of deep eutectic solvents (DES) as electrolytes in flow electrode capacitive deionisation (FCDI) desalination systems, providing a novel and improved alternative to aqueous flow electrodes. The deep eutectic solvent, choline chloride-urea (ChCl-U), was selected for its wide electrochemical stability window, allowing voltages exceeding 1.23 V, which is the limit for aqueous flow electrodes. The effect of water doping on the viscosity and performance of the DES flow electrodes was also investigated. Cyclic voltammetry confirmed the electrochemical stability, while rheological and electrochemical impedance spectroscopy revealed that the addition of water reduced the viscosity and enhanced the conductivity of ChCl-U, making it suitable for use as an electrolyte in FCDI. Desalination experiments were performed within a potential range of up to 2.2 V. The ChCl-U flow electrode, containing 20 wt% water and 10 wt% activated carbon, achieved the best balance between desalination efficiency (83 %), desalination rate (0.17 mg/cm2.min), and effluent quality. Furthermore, 1H NMR analysis confirmed the absence of traces of the deep eutectic solvent in the dilute stream. The results highlight the potential of DES flow electrodes to enhance desalination processes by enabling higher operational voltages and improved performance, thereby paving the way for more efficient FCDI desalination systems.

2024
Teixeira, FC, Teixeira APS, Rangel CM.  2024.  New triazinephosphonate dopants for Nafion proton Exchange membranes (PEM). Beilstein Journal of Organic Chemistry. 20(1):1623-1634.
Esmear, T, Twilley D, Thipe {VC}, Katti {KV }, Mandiwana V, Kalombo {ML}, Ray {SS}, Rikhotso-Mbungela R, Bovilla {VR}, Madhunapantula {SR}, Langhanshova L, Roma-Rodrigues C, Fernandes {AR}, Baptista P, Hlati S, Pretorius J, Lall N.  2024.  Anti-inflammatory and antiproliferative activity of Helichrysum odoratissimum sweet. Against lung cancer. South African Journal of Botany. 166:525–538.: Elsevier Abstract

Lung cancer remains the top killing cancer worldwide despite advances in treatment. Seven ethanolic plant extracts were selected and evaluated for their antiproliferative activity against the two main types of lung cancers: non-small cell (A549) and small cell lung cancer cells (SHP-77). An ethanolic extract of Helichrysum odoratissimum Sweet (HO) showed significant antiproliferative activity against lung cancer, with a fifty percent inhibitory concentration (IC50) of 83.43 ± 1.60 µg/mL (A549), 49.46 ± 0.48 µg/mL (SHP-77) and 50.71 ± 2.27 µg/mL, against normal lung epithelial cells (MRC-5), resulting in a selectivity index (SI) value of 0.61 on A549 cells and 1.03 on SHP-77 cells, which was compared to the positive drug control, actinomycin D where the SI values were found to be 2 and 0.25 against A549 and SHP-77 cells, respectively. Against murine macrophages (RAW 264.7) and hepatocytes (HepG2), the HO ethanolic extract showed IC50 values of 60.15 ± 1.98 µg/mL and 23.61 ± 1.06 µg/mL, respectively. Microscopy showed that the HO ethanolic extract induced apoptosis in the A549 and HepG2 cells at 50 µg/mL and 300 µg/mL, respectively. The HO ethanolic extract, furthermore, inhibited the pro-inflammatory enzymes, cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) with IC50 values of 7.94 ± 3.84 µg/mL and 2.08 ± 1.35 µg/mL, respectively, whereas the positive controls Ibuprofen (COX-2) and Zileuton (5-LOX) showed IC50 values of 0.85 ± 0.14 µg/mL and 0.06 ± 0.05 µg/mL, respectively. The activity of NAD(P)H quinone oxidoreductase-1 (NQO1), which is a direct target of nuclear factor erythroid-2-related factor-2 (NRF2), was significantly inhibited in the A549 cells by the HO ethanolic extract (at 125 µg/mL) when compared to the positive control, brusatol (at 500 nM). Using the ex ovo yolk sac membrane (YSM) assay, the HO ethanolic extract (at 18.5 µg/egg) showed a 31.65 ± 12.80% inhibition of blood vessel formation. This is the first report of the noteworthy antiproliferative activity of the HO ethanolic extract on lung cancer cells including its potential to target several enzymes associated with inflammation and therefore, should be considered for further analysis.

Moreira, D, Alexandre D, Miranda A, c}o PL{\c, Baptista {PV}, Tomaz C, Lu Y, Cruz C.  2024.  Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay. Molecules. 29, Number 13: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Lung cancer (LC) is recognized as one of the most prevalent and lethal cancers worldwide, underscoring an urgent need for innovative diagnostic and therapeutic approaches. MicroRNAs (miRNAs) have emerged as promising biomarkers for several diseases and their progression, such as LC. However, traditional methods for detecting and quantifying miRNAs, such as PCR, are time-consuming and expensive. Herein, we used a molecular beacon (MB) bead-based assay immobilized in a microfluidic device to detect miR-155-3p, which is frequently overexpressed in LC. The assay relies on the fluorescence enhancement of the MB upon binding to the target miRNA via Watson and Crick complementarity, resulting in a conformational change from a stem–loop to a linear structure, thereby bringing apart the fluorophores at each end. This assay was performed on a microfluidic platform enabling rapid and straightforward target detection. We successfully detected miR-155-3p in a saline solution, obtaining a limit of detection (LOD) of 42 nM. Furthermore, we evaluated the method’s performance in more complex biological samples, including A549 cells’ total RNA and peripheral blood mononuclear cells (PBMCs) spiked with the target miRNA. We achieved satisfactory recovery rates, especially in A549 cells’ total RNA.

2023
Susnik, E, Bazzoni A, Taladriz-Blanco P, Balog S, Moreno-Echeverri {AM}, Glaubitz C, {Brito Oliveira} B, Ferreira D, {Viana Baptista} P, Petri-Fink A, Rothen-Rutishauser B.  2023.  Epidermal growth factor alters silica nanoparticle uptake and improves gold-nanoparticle-mediated gene silencing in A549 cells, jul. Frontiers in Nanotechnology. 5: Frontiers Media Abstract

Introduction: Delivery of therapeutic nanoparticles (NPs) to cancer cells represents a promising approach for biomedical applications. A key challenge for nanotechnology translation from the bench to the bedside is the low amount of administered NPs dose that effectively enters target cells. To improve NPs delivery, several studies proposed NPs conjugation with ligands, which specifically deliver NPs to target cells via receptor binding. One such example is epidermal growth factor (EGF), a peptide involved in cell signaling pathways that control cell division by binding to epidermal growth factor receptor (EGFR). However, very few studies assessed the influence of EGF present in the cell environment, on the cellular uptake of NPs. Methods: We tested if the stimulation of EGFR-expressing lung carcinomacells A549 with EGF affects the uptake of 59 nm and 422 nm silica (SiO2) NPs. Additionally, we investigated whether the uptake enhancement can be achieved with gold NPs, suitable to downregulate the expression of cancer oncogene c-MYC. Results: Our findings show that EGF binding to its receptor results in receptor autophosphorylation and initiate signaling pathways, leading to enhanced endocytosis of 59 nm SiO2 NPs, but not 422 nm SiO2 NPs. Additionally, we demonstrated an enhanced gold (Au) NPs endocytosis and subsequently a higher downregulation of c-MYC. Discussion: These findings contribute to a better understanding of NPs uptake in the presence of EGF and that is a promising approach for improved NPs delivery.

Trovão, F, Correia VG, Lourenço FM, Ribeiro DO, Carvalho AL, Palma AS, Pinheiro BA.  2023.  The structure of a Bacteroides thetaiotamicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome, 2023. :100084. AbstractWebsite

TheBacteroides thetaiotaomicronhas developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RGII depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of themoduleat the C-terminal domain, which we designated BT0996C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical β-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.

Teixeira, FC, Teixeira APS, Rangel CM.  2023.  Chemical stability of new nafion membranes doped with bisphosphonic acids under Fenton oxidative conditions. Int. J. Hydrogen Energy. 48(96):37489-37499.
Shlapa, Y, Siposova K, Veltruska K, Maraloiu V-A, Rajnak M, Garcarova I, Timko M, Musatov A, A. B.  2023.  Design of Magnetic Fe3O4/CeO2 “Core/Shell”-Like Nanocomposites with Pronounced Antiamyloidogenic and Antioxidant Bioactivity. ACS Appl. Mater. Interfaces. 15(42):49346–49361.
Silva, MA, Fernandes AP, Turner DL, Salgueiro CA.  2023.  A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments. International Journal of Molecular Sciences. 24, Number 8 AbstractWebsite

Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 ( 42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C ( 11 kDa/three hemes) and D ( 10 kDa/three hemes), as well as for bi-domain CD ( 21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.

2022
Twilley, D, Thipe {VC }, Kishore N, Bloebaum P, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Selepe {MA }, Langhansova L, Katti K, Lall N.  2022.  Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis, nov. Pharmaceuticals. 15, Number 12: Molecular Diversity Preservation International (MDPI) Abstract

Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.

Alexandre, D, Teixeira B, Rico A, Valente S, Craveiro A, Baptista {PV}, Cruz C.  2022.  Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer, mar. International Journal of Molecular Sciences. 23, Number 6: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.

Oliveira, A, Ramou E, Teixeira G, Palma S, Roque A.  2022.  Incorporation of VOC-Selective Peptides in Gas Sensing Materials, feb. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies. :25–34. AbstractPDFWebsite

Enhancing the selectivity of gas sensing materials towards specific volatile organic compounds (VOCs) is
challenging due to the chemical simplicity of VOCs as well as the difficulty in interfacing VOC selective
biological elements with electronic components used in the transduction process. We aimed to tune the
selectivity of gas sensing materials through the incorporation of VOC-selective peptides into gel-like gas
sensing materials. Specifically, a peptide (P1) known to discriminate single carbon deviations among benzene
and derivatives, along with two modified versions (P2 and P3), were integrated with gel compositions
containing gelatin, ionic liquid and without or with a liquid crystal component (ionogels and hybrid gels
respectively). These formulations change their electrical or optical properties upon VOC exposure, and were
tested as sensors in an in-house developed e-nose. Their ability to distinct and identify VOCs was evaluated
via a supervised machine learning classifier. Enhanced discrimination of benzene and hexane was detected
for the P1-based hybrid gel. Additionally, complementarity of the electrical and optical sensors was observed
considering that a combination of both their accuracy predictions yielded the best classification results for the
tested VOCs. This indicates that a combinatorial array in a dual-mode e-nose could provide optimal
performance and enhanced selectivity.

Nuez-Martínez, M, Queralt-Martín M, Muñoz-Juan A, Aguilella {VM }, Laromaine A, Teixidor F, Viñas C, Pinto {CG }, Pinheiro T, Guerreiro {JF }, Mendes F, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Valic S, Marques F.  2022.  Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma, dec. Journal of Materials Chemistry B. 10:9794–9815., Number 47: RSC - Royal Society of Chemistry Abstract

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]− and [8,8′-I2-o-FESAN]−), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.

Twilley, D, Meyer D, Langhansova L, Mcgaw {LJ }, Madikizela B, Roma-Rodrigues C, Baptista, {P. V}, Fernandes {AR }, Lall N.  2022.  Short Lecture 4 {"}Evaluation of antiproliferative and anti-angiogenic activity of an ethanolic extract of Helichrysum odoratissimum (L.) Sweet against skin cancer{"}, dec. Planta Medica. 88:1398–1398., Number 15: Georg Thieme Verlag Abstract
n/a
Thales, P, Vale TM, Dias RJ, Lourenço JM.  2022.  Empowering a Relational Database with LSD: Lazy State Determination, 8-9 Sep.. Atas do INForum 2022. , Atas INForum 2022. Instituto Politécnico da Guardatv22_-_lsd-sql.pdf