Santos, L, Silveira CM, Elangovan E, Neto JP, Nunes D, Pereira L, Martins R, Viegas J, Moura JJG, Todorovic S, Almeida MG, Fortunato EM.
2016.
Synthesis of WO3 nanoparticles for biosensing applications. Sensors and Actuators B: Chemical. 223:186-194.
Terao, M, Romão MJ, Leimkühler S, Bolis M, Fratelli M, Coelho C, Santos-Silva T, Garattini E.
2016.
Structure and function of mammalian aldehyde oxidases. Archives of Toxicology. 90:753–780., Number 4
AbstractMammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.
Sharipova, AA, Aidarova SB, Bekturganova NE, Tleuova A, Schenderlein M, Lygina O, Lyubchik S, Miller R.
2016.
Triclosan as model system for the adsorption on recycled adsorbent materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 505:193-196.
AbstractThe adsorption of triclosan as model system was studied to qualify activated carbon sorbents recycled from gas masks (civilian gas mask GP5). The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the activated carbon characterized by scanning electron microscopy, and the amount of the adsorbed triclosan on the activated carbon quantified by a mass balance method. Experimental isotherms were fitted by Langmuir, Freundlich and Sips adsorption models. It was obtained that the contact time is a crucial sorption parameter that provides information on the optimum adsorption efficiency. It was shown that the maximum efficiency of GP5 (88%) is obtained after 10days of adsorption at a maximal concentration of triclosan and carbon loading 1mg/l. No significant adsorption efficiency differences were measured after 5 and 10days of adsorption. The non-linear Sips isotherm, a combined Freundlich–Langmuir model, provides suitable fitting results. The observed remarkable adsorption capacity of activated carbon (GP5) towards triclosan adsorption (∼85mg/g) makes it a viable solution for wastewater treatment.