Export 1483 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Craveiro, R, Martins M, Santos GB, N. T. Correia, Dionísio M, Barreiros S, Duarte ARC, Reis RL, Paiva A.  2014.  Starch-based polymer – IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials. RSC Advances. 4:17161-17170.Website
Silva, MA, Valente RC, Pokkuluri PR, Turner DL, Salgueiro CA, Catarino T.  2014.  Thermodynamic and kinetic characterization of two methyl-accepting chemotaxis heme sensors from Geobacter sulfurreducens reveals the structural origin of their functional difference. Biochim Biophys Acta. 1837(6):920-928. AbstractWebsite

The periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.

Loureiro, J, Neves N, Barros R, Mateus T, Santos R, Filonovich S, Reparaz S, Torres CMS, Wyczisk F, Divay L, Martins R, Ferreira I.  2014.  Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. J. Mater. Chem. A. 2(18):6649-6655. AbstractWebsite

Improved thermoelectric properties of Aluminum Zinc Oxide (AZO) thin films deposited by radio frequency (RF) and pulsed Direct Current (DC) magnetron sputtering at room temperature are reported. In both techniques films were deposited using sintered and non-sintered targets produced from nano-powders. It is confirmed that both the Al doping concentration and film thickness control the thermoelectric, optical and structural properties of these films. Seebeck coefficients up to −134 μV K−1 and electrical conductivities up to 4 × 104 (Ω m)−1 lead to power factors up to 4 × 10−4 W mK−2, which is above the state-of-the-art for similar materials, almost by a factor of three. The thermoelectric I–V response of an optimized AZO element with a planar geometry was measured and a maximum power output of 2.3 nW, for a temperature gradient of 20 K near room temperature, was obtained. Moreover, the low thermal conductivity (<1.19 W mK−1) yields a ZT value above 0.1. This is an important result as it is at least three times higher than the ZT found in the literature for AZO, at room temperature, opening new doors for applications of this inexpensive, abundant and environmental friendly material, in a new era of thermoelectric devices.

Schedel, J, Amado MP.  2014.  Urban Regeneration: More Energy, Less Carbon. 40th IAHS World Congress in Housing – Sustainable Housing Construction. :49,ISBN:978-989-98949-0-7., Funchal, Madeira: Univ. Coimbra
Sanguino P, Monteiro T, Bhattacharyya SR, Dias CJ, Igreja R, Franco R.  2014.  ZnO NANORODS AS IMMOBILIZATION LAYERS FOR INTERDIGITATED CAPACITIVE IMMUNOSENSORS. Sensors and Actuators B:Chemical . 204:211-217.
McVey, CE, Ferreira MJ, Correia B, Lahiri S, de Sanctis D, Carrondo MA, Lindley PF, de Sá Nogueira I, Soares CM, Bento I.  2014.  The importance of the Abn2 calcium cluster in the endo-1,5-arabinanase activity from Bacillus subtilis. JBIC Journal of Biological Inorganic Chemistry. 19:505-513., Number 4-5: Springer Berlin Heidelberg Abstract

Arabinanase is a glycosyl hydrolase that is able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. The enzyme has two domains, an N-terminal catalytic domain with a characteristic β-propeller fold and a C-terminal domain whose function is unknown. A calcium ion, located near the catalytic site, serves to stabilize the N-terminal domain, but it has also been proposed to play a key role in the enzyme mechanism. The present work describes the structure of an inactive mutant of the wild-type enzyme (H318Q) and in which the calcium ion has been adventitiously replaced by nickel. These structural studies, together with functional and modelling studies, clearly support the role of the calcium ion in the overall reaction mechanism.

Sampaio, JM, Madeira TI, Marques JP, Parente F, Costa AM, Indelicato P, Santos JP, Lépy M-C, Ménesguen Y.  2014.  Approaches for theoretical and experimental determinations of K-shell decay rates and fluorescence yields in Ge. Physical Review A. 89:012512., Number 1: APS AbstractWebsite
n/a
Viegas, MC, Moniz A, Santos PT.  2014.  Artisanal fishermen contribution for the integrated and sustainable coastal management - application of strategic SWOT analysis. Procedia - Social and Behavioral Sciences. 2014:257-267. AbstractWebsite
n/a
Otrelo-Cardoso, AR, Schwuchow V, Rodrigues D, Cabrita EJ, Leimkuehler S, Romao MJ, Santos-Silva T.  2014.  Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes. Plos One. 9, Number 1 AbstractWebsite
n/a
Otero, V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ.  2014.  Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. Journal of Raman Spectroscopy. 45:1197-1206., Number 11-12 AbstractWebsite
n/a
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications. Chemistry – An Asian Journal. 9:1132–1143., Number 4: WILEY-VCH Verlag AbstractWebsite
n/a
Sousa, A, Cabrita L, Araujo P, Mateus N, Pina F, de Freitas V.  2014.  Color stability and spectroscopic properties of deoxyvitisins in aqueous solution. New Journal of Chemistry. 38:539-544., Number 2 AbstractWebsite
n/a
Sousa, A, Cabrita L, Araujo P, Mateus N, Pina F, de Freitas V.  2014.  Color stability and spectroscopic properties of deoxyvitisins in aqueous solution. New Journal of Chemistry. 38:539-544., Number 2 AbstractWebsite
n/a
{Peixoto de Almeida}, M, Pereira E, Baptista P, Gomes I, Figueiredo S, Soares L, Franco R.  2014.  Gold Nanoparticles as (Bio)Chemical Sensors. Comprehensive Analytical Chemistry. 66:529–567.: Elsevier Abstract

This chapter focuses on several sensing strategies and major recent advances in the use of gold nanoparticles in (bio)sensing of chemical and biological analytes. A brief introduction is presented on relevant properties of gold nanoparticles for sensing, the main types of (bio)chemical sensors, and the main detection techniques, followed by subsections according to sensing methodologies. These include colorimetric sensing and the biobarcode assay, fluorometric-based methods, electric and electrochemical sensing, and, last, more recent and advanced methodologies such as surface plasmon resonance and Raman-based sensors. In closing, relevance is given to advanced methods, featuring extremely high sensitivity and selectivity, down to single-molecule detection. Anisotropic gold nanoparticles have a special role in future developments.

Oliveira, J, Bras NF, da Silva MA, Mateus N, Parola JA, de Freitas V.  2014.  Grape anthocyanin oligomerization: A putative mechanism for red color stabilization? Phytochemistry. 105:178-185. AbstractWebsite
n/a
Ribeiro, D, Freitas M, Tomé SM, Silva AM, Porto G, Cabrita EJ, Marques MM, Fernandes E.  2014.  Inhibition of LOX by flavonoids: a structure-activity relationship study.. European Journal of Medicinal Chemistry. 72:137-145. Abstract

The lipoxygenase (LOX) products have been identified as mediators of a series of inflammatory diseases, namely rheumatoid arthritis, inflammatory bowel disease, psoriasis, allergic rhinitis, atherosclerosis and certain types of cancer. Hence, LOX inhibitors are of interest for the modulation of these phenomena and resolution of the inflammatory processes. During LOX activity, peroxyl radical complexes are part of the reaction and may function as sources of free radicals. Thus antioxidants, such as flavonoids, capable of inhibiting lipid peroxidation and scavenging free radicals, may act as LOX inhibitors. The aim of this work was to assess the structure–activity relationship among a series of flavonoids concerning 5-LOX inhibition, through a systematic study of the inhibition of the formation of LTB4 in human neutrophils. The type of inhibition of the flavonoids was further studied using soybean LOX, type I, and Saturation Transfer Difference 1H NMR (STD-1H NMR) was used to characterize the binding epitopes of the compounds to LOX-1. The obtained results reinforce flavonoids as effective inhibitors of LTB4 production in human neutrophils. It was also possible to establish a structure/activity relationship for the inhibitory activity and the type of inhibition.

Ferreira, JP, Viveiros R, Lourenco A, da Silva MS, Rosatella A, Casimiro T, Afonso CAM.  2014.  Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers. RSC Adv.. 4:54948-54952.: The Royal Society of Chemistry AbstractWebsite

The production of ultra-low-sulfur diesel is an important worldwide demand. In this work a novel integrated method for desulfurization of diesel is proposed based on the combination of Bronsted acid catalyzed oxidation and the selective removal of the oxidized products using a molecularly imprinted polymer (MIP) produced in supercritical carbon dioxide (scCO2). The biphasic oxidation reaction of dibenzothiophene sulfone (DBT){,} as model substrate{,} and H2O2 as oxidant{,} was optimized by testing different acid catalysts{,} and also different phase transfer catalysts (PTC){,} including two different ionic liquids (ILs) trihexyl(tetradecyl)phosphoniumchloride [P6{,}6{,}6{,}14]Cl and Aliquat[registered sign]. The products of the efficient oxidation of DBT{,} dibenzothiophene sulfoxide (DBTSO) and dibenzothiophene sulfone (DBTSO2){,} were then selectively removed from real diesel using the MIP.

Marrucho, IM, Branco LC, Rebelo LPN.  2014.  Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, Vol 5. 5(Prausnitz, J. M., Doherty, M. F., Segalman, R. A., Eds.).:527-546. Abstract
n/a
Martins, ANC, Simeonov SP, Frija LMT, Viveiros R, Lourenço A, da Silva MS, Casimiro T, Afonso CAM.  2014.  Isolation, analytical quantification and seasonal variation of labdanolic acid from the Portuguese-grown Cistus ladaniferus. Industrial Crops and Products. 60:226-232. AbstractWebsite
n/a
Sa, S, Gawande MB, Velhinho A, Veiga JP, Bundaleski N, Trigueiro J, Tolstogouzov A, Teodoro OMND, Zboril R, Varma RS, Branco PS.  2014.  Magnetically recyclable magnetite-palladium (Nanocat-Fe-Pd) nanocatalyst for the Buchwald-Hartwig reaction. GREEN CHEMISTRY. 16:3494-3500., Number 7 Abstract
n/a
Pawlowski, S, Sistat P, Crespo JG, Velizarov S.  2014.  Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness. Journal of Membrane Science. 471:72-83. AbstractWebsite

Power generation by reverse electrodialysis (RED) depends on ionic mass transfer through alternately arranged cation- and anion-exchange membranes. Chronopotentiometric measurements were carried out in an EDR-Z Mini stack (MEGA a.s.), equipped with Ralex heterogeneous membranes, separated by either sheet flow spacers or mesh-free gaskets. Various concentrations of model NaCl solutions were used to study the ohmic and non-ohmic resistances in the stack under different hydrodynamic conditions. In order to eliminate the uncertainties associated with a non-uniform distribution of the applied current over the membrane surface, the relaxation zone of the obtained chronopotentiograms was used to estimate the diffusion boundary layer thickness. It was found that this approach provide more accurate data under RED operating conditions, which are strongly influenced by entrance effects on mass transfer, especially for a spacer-free channel configuration. For shorter flow channels, since the salt concentration profile across the diffusion boundary layer is not yet fully developed, more power can be obtained than in the case of longer channels. The presence of spacers was found to reduce the boundary layer thickness, but also increased the ohmic resistance, due to their shadow effect over the membrane surface. The description of the impact of flow entrance effects on mass transfer, and therefore on diffusion boundary layer thickness, can be useful for characterization and further design and/or optimization of RED stacks performance.

Fundo, JF, Fernandes R, Almeida PM, Carvalho A, Feio G, Silva CL, Quintas MA.  2014.  Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chem. 144:2-8. AbstractWebsite

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain.

Penon, O, Moro AJ, Santucci D, Amabilino DB, Lima JC, Perez-Garcia L, Rodriguez L.  2014.  Molecular recognition of aliphatic amines by luminescent Zn-porphyrins. Inorganica Chimica Acta. 417:222-229. AbstractWebsite
n/a
Pessoa, JC, Gonçalves G, Roy S, Correia I, Mehtab S, Santos MFA, Santos-Silva T.  2014.  New insights on vanadium binding to human serum transferrin. Inorganica Chimica Acta. 420:60-68. AbstractWebsite

Abstract The knowledge on the binding of vanadium ions and complexes to serum proteins and how vanadium might be transported in blood and up-taken by cells has received much attention during the last decade, particularly as far as the transport of VIVO2+ is concerned. In this work we revise and discuss some relevant aspects of previous research, namely the two main types of binding proposed for transport of VIVO(carrier)2 complexes. New results, obtained by circular dichroism (CD), \{EPR\} and gel electrophoresis, regarding the binding of vanadium to hTF in the oxidation states +5 and +3 are also presented. Namely, evidences for the binding of VV-species to diferric-transferrin, designated by (FeIII)2hTF, as well as to (AlIII)2hTF, are presented and discussed, the possibility of up-take of vanadate by cells through (FeIII)2hTF endocytosis being suggested. It is also confirmed that \{VIII\} binds strongly to hTF, forming di-vanadium(III)-transferrin, designated by (VIII)2hTF, and gel electrophoresis experiments indicate that (VIII)2hTF corresponds to a ‘closed conformation’ similar to (FeIII)2hTF.

Cachitas, H, Sebastiao PJ, Feio G, Chavez FV.  2014.  Proton NMR relaxation study of molecular dynamics of chromonic liquid crystal Edicol Sunset Yellow. Liquid Crystals. 41:1080-1089., Number 8 AbstractWebsite

Proton nuclear magnetic resonance (H-1 NMR) relaxometry, over about five decades in Larmor frequency, and pulsed field gradient NMR were used to study the molecular dynamics in the chromonic nematic and isotropic phases of stacked molecules of the binary mixture composed by Edicol Sunset Yellow (ESY) and deuterated water. Our results evidence that in both phases collective motions are responsible for the spin-lattice relaxation dispersion in the Larmor frequency range below 1 MHz. In the nematic phase, the collective motion are attributed to columnar undulations within the stacked molecules, while, in the isotropic phase, the results are explained by local order fluctuations due to the formation of the stacks. The high frequency dispersion was explained by individual molecular motions like rotations around and perpendicular to the stack axis, and also self-diffusion.