Kadar, E, Batalha ÍL, Fisher A, Roque ACA.
2014.
The interaction of polymer-coated magnetic nanoparticles with seawater. Science of The Total Environment. 487:771-777.
AbstractLaboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.
Carvalho, T, Augusto V, Rocha A, Lourenco NMT, Correia NT, Barreiros S, Vidinha P, Cabrita EJ, Dionisio M.
2014.
Ion Jelly Conductive Properties Using Dicyanamide-Based Ionic Liquids. Journal of Physical Chemistry B. 118(31):9445-9459.
AbstractThe thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D+) and anions (D–) were extracted. D+ values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D+ varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, 10–2 S·cm–1 and 10–10 m2·s–1. For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari–Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.
Ramalhete, I, Amado MP, Farias H.
2014.
Low Cost Adaptive Housing Model. 40th IAHS World Congress in Housing – Sustainable Housing Construction. :54,ISBN:978-989-98949-0-7., Funchal, Madeira: Univ. Coimbra
Arcau, J, Andermark V, Aguiló E, Gandioso A, Moro A, Cetina M, Lima JC, Rissanen K, Ottb I, Rodríguez L.
2014.
Luminescent alkynyl-gold(I) coumarin derivatives and their biological activity. Dalton Transactions. 43:4426-4436.
AbstractLuminescent alkynyl-gold(I) coumarin derivatives and their biological activity
The synthesis and characterization of three propynyloxycoumarins are reported in this work together with the formation of three different series of gold(I) organometallic complexes. Neutral complexes are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its corresponding dialkynyl complex is also shown and the formation of rectangular dimers for the gold derivative in the solid state can be observed. A detailed analysis of the absorption and emission spectra of both ligands and complexes allows us to attribute the luminescent behaviour to the coumarin organic ligand. Moreover, the presence of the gold(I) metal atom seems to be responsible for an increase of coumarin phosphorescence emission. The biological activity of the complexes showed that the anionic complexes triggered strong cytotoxic effects in two different cell lines whereas the neutral gold alkynyl complexes led to lower effects against tumor cell growth. Thioredoxin reductase (TrxR) inhibition was very strong in the case of the neutral complexes (IC50 values below 0.1 μM) but moderate for the anionic complexes (IC50 values above 0.8 μM).
Dhadge, VL, Rosa S, Azevedo A, Aires-Barros R, Roque ACA.
2014.
Magnetic Aqueous Two Phase Fishing: An Hybrid Process Technology for Antibody Purification. J. Chromatogr. A. 1339:59-64.
AbstractThe potential to combine aqueous two-phase extraction (ATPE) with magnetic separation was here investigated with the aim of developing a selective non-chromatographic method for the purification of antibodies from cell culture supernatants. Aqueous two-phase systems (ATPS) composed of polyethylene glycol (PEG) and dextran were supplemented with several surface modified magnetic particles (MPs) at distinct salt concentrations. The partition of pure human IgG in the upper and lower phases as well as the amount adsorbed at the MPs surface was investigated, indicating that MPs coated with dextran and gum Arabic established the lowest amount of non-specific interactions. The binding capacity of gum arabic coated particles modified with aminophenyl boronic acid (GA-APBA-MP) was were found to be excellent in combination with the ATPS system, yielding high yields of antibody recovery (92%) and purity (98%) from cell culture supernatants. The presence of MPs in the ATPS was found to speed up phase separation (from 40 to 25 min), to consume a lower amount of MPs (half of the amount needed in magnetic fishing) and to increase the yield and purity of a mAb purified from a cell culture supernatant, when compared with ATPE or magnetic fishing processes alone.
Loureiro, J, Santos JR, Nogueira A, Wyczisk F, Divay L, Reparaz S, Alzina F, Torres CMS, Cuffe J, Montemor F, Martins R, Ferreira I.
2014.
Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties. J. Mater. Chem. A. 2(18):6456-6462.
AbstractThe urgent need for non-toxic and abundant thermoelectric materials has become a significant motivation to improve the figures of merit of metal oxides in order to remove the barrier towards their widespread use for thermoelectric applications. Here we show the influence of a Cr layer in boosting the thermoelectric properties of vanadium pentoxide (V2O5) thin films, deposited by thermal evaporation and annealed at 500 °C. The Cr to V2O5 thickness ratio controls the morphological and thermoelectric properties of the thin films produced. The optimized Seebeck coefficient and power factor values at room temperature are +50 μV K−1 and 7.9 × 10−4 W m−1 K−2, respectively. The nanograin structure of the films is responsible for an improvement in the electrical conductivity up to 3 × 105 (Ω m)−1 with a typical thermal conductivity of 1.5 W m−1 K−1. These results combine to yield promising p-type thermoeletric CrV2O5 thin films with a ZT of 0.16 at room temperature.
Maiti, BK, Maia LB, Pal K, Pakira B, Aviles T, Moura I, Pauleta SR, Nuñez JL, Rizzi AC, Brondino CD, Sarkar S, Moura JJG.
2014.
One Electron Reduced Square Planar Bis(benzene-1,2-dithiolato) Copper Dianionic Complex and Redox Switch by O2/HO-. Inorg Chem. 53:12799-12808.
Barroso, T, Branco RJF, Aguiar‐Ricardo A, Roque ACA.
2014.
Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. Journal of Computer-Aided Molecular Design. 28(1):25-34.
AbstractAffinity chromatography is one of the most common techniques employed at the industrial-scale for antibody purification. In particular, the purification of human immunoglobulin G (hIgG) has gained relevance with the immobilization of its natural binding counterpart—Staphylococcus aureus Protein A (SpA) or with the recent development of biomimetic affinity ligands, namely triazine-based ligands. These ligands have been developed in order to overcome economic and leaching issues associated to SpA. The most recent triazine-based ligand—TPN-BM, came up as an analogue of 2-(3-amino-phenol)-6-(4-amino-1-naphthol)-4-chloro-sym-triazine ligand also known as ligand 22/8 with improved physico-chemical properties and a greener synthetic route. This work intends to evaluate the potential of TPN-BM as an alternative affinity ligand towards antibody recognition and binding, namely IgG, at an atomic level, since it has already been tested, after immobilization onto chitosan-based monoliths and demonstrated interesting affinity behaviour for this purpose. Herein, combining automated molecular docking and molecular dynamics simulations it was predicted that TPN-BM has high propensity to bind IgG through the same binding site found in the crystallographic structure of SpA_IgG complex, as well as theoretically predicted for ligand 22/8_IgG complex. Furthermore, it was found that TPN-BM established preferential interactions with aromatic residues at the Fab domain (Trp 50, Tyr 53, Tyr 98 and Trp 100), while in the Fc domain the main interactions are based on hydrogen bonds with pH sensitive residues at operational regime for binding and elution like histidines (His 460, His 464, His 466). Moreover, the pH dependence of TPN-BM_IgG complex formation was more evident for the Fc domain, where at pH 3 the protonation state and consequently the charge alteration of histidine residues located at the IgG binding site induced ligand detachment which explains the optimal elution condition at this pH observed experimentally.
Pina, AS, Guilherme M, Pereira AS, Fernandes CSM, Branco RJF, Lowe CR, Roque ACA.
2014.
A tailor made affinity pair “tag-receptor” for the purification of fusion proteins. ChemBioChem. 15(10):1423-35.
AbstractA novel affinity “tag–receptor” pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet-21c expression vector and expressed in E. coli host as soluble protein. A solid-phase combinatorial library based on the Ugi reaction was synthesized: 64 affinity ligands displaying complementary functionalities towards the designed tag. The library was screened by affinity chromatography in a 96-well format for binding to the RKRKRK-tagged GFP protein. Lead ligand A7C1 was selected for the purification of RKRKRK fusion proteins. The affinity pair RKRKRK-tagged GFP with A7C1 emerged as a promising solution (Ka of 2.45×105 M−1). The specificity of the ligand towards the tag was observed experimentally and theoretically through automated docking and molecular dynamics simulations.
Fernandes, CSM, Pina AS, Dias AMGC, Branco RJF, Roque ACA.
2014.
A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification. Journal of Biotechnology. 186:13-20.
AbstractThe green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions.
Loureiro, J, Neves N, Barros R, Mateus T, Santos R, Filonovich S, Reparaz S, Torres CMS, Wyczisk F, Divay L, Martins R, Ferreira I.
2014.
Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. J. Mater. Chem. A. 2(18):6649-6655.
AbstractImproved thermoelectric properties of Aluminum Zinc Oxide (AZO) thin films deposited by radio frequency (RF) and pulsed Direct Current (DC) magnetron sputtering at room temperature are reported. In both techniques films were deposited using sintered and non-sintered targets produced from nano-powders. It is confirmed that both the Al doping concentration and film thickness control the thermoelectric, optical and structural properties of these films. Seebeck coefficients up to −134 μV K−1 and electrical conductivities up to 4 × 104 (Ω m)−1 lead to power factors up to 4 × 10−4 W mK−2, which is above the state-of-the-art for similar materials, almost by a factor of three. The thermoelectric I–V response of an optimized AZO element with a planar geometry was measured and a maximum power output of 2.3 nW, for a temperature gradient of 20 K near room temperature, was obtained. Moreover, the low thermal conductivity (<1.19 W mK−1) yields a ZT value above 0.1. This is an important result as it is at least three times higher than the ZT found in the literature for AZO, at room temperature, opening new doors for applications of this inexpensive, abundant and environmental friendly material, in a new era of thermoelectric devices.
Moro, AJ, Pana A-M, Cseh L, Costisor O, Parola J, Cunha-Silva L, Puttreddy R, Rissanen K, Pina F.
2014.
Chemistry and Photochemistry of 2,6-Bis(2-hydroxybenzilidene)cyclohexanone. An Example of a Compound Following the Anthocyanins Network of Chemical Reactions. Journal of Physical Chemistry A. 118:6208-6215., Number 32
Abstractn/a
Reimão-Pinto, {MM }, Cordeiro A, Almeida C, Pinheiro {AV }, Moro A, Lima {JC }, Baptista P.
2014.
Dual-color control of nucleotide polymerization sensed by a fluorescence actuator. Photochemical & Photobiological Sciences. 13:751–756., Number 5: Springer
AbstractSpatial and temporal control of molecular mechanisms can be achieved using photolabile bonds that connect biomolecules to protective caging groups, which can be cleaved upon irradiation of a specific wavelength, releasing the biomolecule ready-to-use. Here we apply and improve a previously reported strategy to tightly control in vitro transcription reactions. The strategy involves two caging molecules that block both ATP and GTP nucleotides. Additionally, we designed a molecular beacon complementary to the synthesized mRNA to infer its presence through a light signal. Upon release of both nucleotides through a specific monochromatic light (390 and 325 nm) we attain a light signal indicative of a successful in vitro transcription reaction. Similarly, in the absence of irradiation, no intense fluorescence signal was obtained. We believe this strategy could further be applied to DNA synthesis or the development of logic gates.
Roma-Rodrigues, C, de Fernandes {MANCR}, Baptista P.
2014.
Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells. BioMed Research International. : Hindawi
AbstractCancer development is amultistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.
Ribeiro, D, Freitas M, Tomé SM, Silva AM, Porto G, Cabrita EJ, Marques MM, Fernandes E.
2014.
Inhibition of LOX by flavonoids: a structure-activity relationship study.. European Journal of Medicinal Chemistry. 72:137-145.
AbstractThe lipoxygenase (LOX) products have been identified as mediators of a series of inflammatory diseases, namely rheumatoid arthritis, inflammatory bowel disease, psoriasis, allergic rhinitis, atherosclerosis and certain types of cancer. Hence, LOX inhibitors are of interest for the modulation of these phenomena and resolution of the inflammatory processes. During LOX activity, peroxyl radical complexes are part of the reaction and may function as sources of free radicals. Thus antioxidants, such as flavonoids, capable of inhibiting lipid peroxidation and scavenging free radicals, may act as LOX inhibitors. The aim of this work was to assess the structure–activity relationship among a series of flavonoids concerning 5-LOX inhibition, through a systematic study of the inhibition of the formation of LTB4 in human neutrophils. The type of inhibition of the flavonoids was further studied using soybean LOX, type I, and Saturation Transfer Difference 1H NMR (STD-1H NMR) was used to characterize the binding epitopes of the compounds to LOX-1. The obtained results reinforce flavonoids as effective inhibitors of LTB4 production in human neutrophils. It was also possible to establish a structure/activity relationship for the inhibitory activity and the type of inhibition.
Ferreira, JP, Viveiros R, Lourenco A, da Silva MS, Rosatella A, Casimiro T, Afonso CAM.
2014.
Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers. RSC Adv.. 4:54948-54952.: The Royal Society of Chemistry
AbstractThe production of ultra-low-sulfur diesel is an important worldwide demand. In this work a novel integrated method for desulfurization of diesel is proposed based on the combination of Bronsted acid catalyzed oxidation and the selective removal of the oxidized products using a molecularly imprinted polymer (MIP) produced in supercritical carbon dioxide (scCO2). The biphasic oxidation reaction of dibenzothiophene sulfone (DBT){,} as model substrate{,} and H2O2 as oxidant{,} was optimized by testing different acid catalysts{,} and also different phase transfer catalysts (PTC){,} including two different ionic liquids (ILs) trihexyl(tetradecyl)phosphoniumchloride [P6{,}6{,}6{,}14]Cl and Aliquat[registered sign]. The products of the efficient oxidation of DBT{,} dibenzothiophene sulfoxide (DBTSO) and dibenzothiophene sulfone (DBTSO2){,} were then selectively removed from real diesel using the MIP.