Export 1240 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Vilaça, P, Santos TG, Rosado L, Miranda RM.  2014.  Innovative concept and application of EC probe for inspection of friction stir welds, 2014. International Journal of Microstructure and Materials Properties. 9(3-5):314-326.: Inderscience Enterprises Ltd. AbstractWebsite

n/a

Pina, AS, Batalha IL, Roque ACA.  2014.  Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods. (Labrou, Nikolaos, Ed.).:147-168.: Springer Abstract

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.

Neves, N, Lagoa A, Calado J, do Rego BAM, Fortunato E, Martins R, Ferreira I.  2014.  Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing. J. Eur. Ceram. Soc.. 34(10):2325-2338. AbstractWebsite

Emulsion detonation synthesis method was used to produce undoped and Al-doped ZnO nanostructured powders (0.5–2.0 wt.% Al2O3). The synthesized powders present a controlled composition and a morphology which is independent on the doping level. The XRD results indicate wurtzite as the single phase for undoped ZnO and the presence of gahnite as secondary phase for Al-doped ZnO powders. The sintering behavior of each powder was studied based on their linear shrinkage and shrinkage rate curves, showing the high sinterability of the powders. Activation energies for densification in the earlier stage were calculated for all compositions and possible sintering mechanisms are suggested depending on the doping level. The high chemical homogeneity and sinterability and the lower electrical resistivity of the bulk Al-doped sintered samples demonstrates the feasibility of emulsion detonation synthesis for the production of high quality Al-doped ZnO powders to be used in ceramic sputtering targets manufacture.

Atilano, ML, Pereira PM, Vaz F, Catalão MJ, Reed P, Grilo IR, Sobral RG, Ligoxygakis P, Pinho MG, Filipe SR.  2014.  Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. eLife. 3:e02277.
Otelo-Cardoso, AR, Schwuchow V, Rodrigues D, Cabrita EJ, Leimkühler S, Romão MJ, Santos-Silva T.  2014.  Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes.. PLoS One. 9(1) Abstract

Molybdenum and tungsten enzymes require specific chaperones for folding and cofactor insertion. PaoD is the chaperone of the periplasmic aldehyde oxidoreductase PaoABC. It is the last gene in the paoABCD operon in Escherichia coli and its presence is crucial for obtaining mature enzyme. PaoD is an unstable, 35 kDa, protein. Our biochemical studies showed that it is a dimer in solution with a tendency to form large aggregates, especially after freezing/thawing cycles. In order to improve stability, PaoD was thawed in the presence of two ionic liquids [C4mim]Cl and [C2OHmim]PF6 and no protein precipitation was observed. This allowed protein concentration and crystallization using polyethylene glycol or ammonium sulfate as precipitating agents. Saturation transfer difference – nuclear magnetic resonance (STD-NMR) experiments have also been performed in order to investigate the effect of the ionic liquids in the stabilization process, showing a clear interaction between the acidic ring protons of the cation and, most likely, negatively charged residues at the protein surface. DLS assays also show a reduction of the overall size of the protein aggregates in presence of ionic liquids. Furthermore, cofactor binding studies on PaoD showed that the protein is able to discriminate between molybdenum and tungsten bound to the molybdenum cofactor, since only a Mo-MPT form of the cofactor remained bound to PaoD.

Dhadge, VL, Hussain A, Azevedo AM, Aires-Barros MR, Roque ACA.  2014.  Boronic acid-modified magnetic materials for antibody purification. J. R. Soc. Interface. 11(91):20130875. AbstractWebsite

Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.

Pina, AS, Lowe CR, Roque ACA.  2014.  Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnology Advances. 32(2):366-381. AbstractWebsite

The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.

Silva, J, Rodrigues AS, Videira PA, Lasri J, Charmier AJ, Pombeiro AJL, Fernandes AR.  2014.  Characterization of the antiproliferative potential and biological targets of a trans ketoimine platinum complex. Inorg Chim Acta. 423:156-167.
Simone, Zanarini, Garino, Nadia, Nair, JIJEESH RAVI, Francia, Carlotta, Wojcik PJ, Luis, Elvira, Rodrigo, Martins, Bodoardo, Silvia, Penazzi N.  2014.  Contrast Enhancement in Polymeric Electrochromic Devices Encompassing Room Temperature Ionic Liquids. International Journal of ELECTROCHEMICAL SCIENCE. 9:1650-1662.
Neves, SO, Rodrigues P, Amado MP.  2014.  Contribution of the social sciences in the transformation of informal communities. 40th IAHS World Congress in Housing – Sustainable Housing Construction. :21-ISBN:978-989-98949-0-7., Funchal, Madeira: Univ. Coimbra
Johnston, EM, Dell'Acqua S, Ramos S, Pauleta SR, Moura I, Solomon EI.  2014.  Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase. J Am Chem Soc. 136:614–617.
Rueff, A-S, Chastanet A, Dominguez-Escobar J, Yao Z, Yates J, Prejean M-V, Delumeau O, P. Noirot, Wedlich-Soldner R, Filipe SR, Carballido-Lopez R.  2014.  An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol. Microbiol. 91:348-362.
Gregório, V, Seixas J, Robinson D, Long G, Gouveia JP.  2014.  Energy Efficiency Challenges: The Linkage between the Past and the Future, for Low Carbon Historic Centres in Portugal. Urban Futures Squaring Circles: Proceedings, International Conference on Urban Futures Squaring Circles 2050. , Institute of Social Sciences of the University of Lisbon and Calouste Gulbenkian Foundation
C, N, R. F, M.P.F. G, M. E, B.A. S, R.C.C. M, L. R, T. M.  2014.  Eu3+ luminescence in aluminophosphate glasses. Journal of Luminescence. 145:582-587. AbstractWebsite

With a 4f6 electronic configuration, europium ions in the trivalent charge state are known to be efficient activators in wide band gap matrices. Embedded in the aluminophosphate (Li2O–BaO–Al2O3–La2O3–P2O5) glasses the optically activated Eu3+ ions lead to intense room temperature orange/red luminescence with 16–23 Cd/m2 by using ultraviolet pumping. The as-prepared and heat treated europium doped glasses for temperatures below and above Tg were studied by room temperature Raman spectroscopy, absorption, photoluminescence excitation, temperature dependent and time dependent photoluminescence. When the samples are excited by 325 nm wavelength photons, an enhancement of the red luminescence intensity by ca. one order of magnitude was found to occur for temperatures between 14 K and 350 K, for all the doped glasses. On the other hand, by using resonant excitation on the 5L6 Eu3+ excited state (λexc~390 nm) the ion emission intensity was found to be nearly constant for temperatures up to 500 K. For higher temperatures a steeper decrease of the luminescence intensity occurs due to non-radiative competitive channels described by activation energies of ca. 235 meV and 450 meV by using 325 and 390 nm wavelength photons as excitation, respectively. The lifetime of the 5D0 level in these glasses is ca. 2.93 ms. A discussion of the thermal population and de-excitation mechanisms is performed.

Roma-Rodrigues, C, Fernandes AR, Baptista PV.  2014.  Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int. 2014:179486.14romarodriguesbmri.pdf
Pina, AS, Batalha ÍL, Fernandes CSM, Aoki MA, Roque ACA.  2014.  Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Research. 66:160–168. AbstractWebsite

Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical–chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 μM for both strains with a visible bactericidal effect.

Dhadge, VL, Morgado PI, Freitas F, Reis MA, Azevedo AM, Aires-Barros R, Roque ACA.  2014.  An extracellular polymer at the interface of magnetic bioseparations. Journal of the Royal Society Interface. 11(100):20140743. AbstractWebsite

FucoPol, a fucose-containing extracellular polysaccharide (EPS) produced by bacterium Enterobacter A47 using glycerol as the carbon source, was employed as a coating material for magnetic particles (MPs), which were subsequently functionalized with an artificial ligand for the capture of antibodies. The performance of the modified MPs (MP–EPS-22/8) for antibody purification was investigated using direct magnetic separation alone or combined with an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and dextran. In direct magnetic capturing, and using pure protein solutions of human immunoglobulin G (hIgG) and bovine serum albumin (BSA), MP–EPS-22/8 bound 120 mg hIgG g−1 MPs, whereas with BSA only 10 ± 2 mg BSA g−1 MPs was achieved. The hybrid process combining both the ATPS and magnetic capturing leads to a good performance for partitioning of hIgG in the desired phase as well as recovery by the magnetic separator. The MPs were able to bind 145 mg of hIgG g−1 of particles which is quite high when compared with direct magnetic separation. The theoretical maximum capacity was calculated to be 410 ± 15 mg hIgG adsorbed g−1 MPs with a binding affinity constant of 4.3 × 104 M−1. In multiple extraction steps, the MPs bound 92% of loaded hIgG with a final purity level of 98.5%. The MPs could easily be regenerated, recycled and re-used for five cycles with only minor loss of capacity. FucoPol coating allowed both electrostatic and hydrophobic interactions with the antibody contributing to enhance the specificity for the targeted products.

Ruivo, A, Andrade S, Rocha J, Laia C, Pina F.  2014.  Formation of Photoluminescent Lead Bromide Nanoparticles on Aluminoborosilicate Glass. Journal of Physical Chemistry C. (118):12436–12442.
Dias, RJ, Vale TM, Lourenço JM.  2014.  Framework Support for the Efficient Implementation of Multi-Version Algorithms. Transactional Memory: Foundations, Algorithms, Tools, and Applications. (Rachid Guerraoui, Paolo Romano, Eds.).: Springer Abstractdias_vale_lourenco.pdf

Software Transactional Memory algorithms associate metadata with the memory locations accessed during a transaction’s lifetime. This metadata may be stored in an external table and accessed by way of a function that maps the address of each memory location with the table entry that keeps its metadata (this is the out-place or external scheme); or alternatively may be stored adjacent to the associated memory cell by wrapping them together (the in-place scheme). In transactional memory multi-version algorithms, several versions of the same memory location may exist. The efficient implementation of these algorithms requires a one-to-one correspondence between each memory location and its list of past versions, which is stored as metadata. In this chapter we address the matter of the efficient implementation of multi-version algorithms in Java by proposing and evaluating a novel in-place metadata scheme for the Deuce framework. This new scheme is based in Java Bytecode transformation techniques and its use requires no changes to the application code. Experimentation indicates that multi-versioning STM algorithms implemented using our new in-place scheme are in average 6× faster than when implemented with the out-place scheme.

Conde, J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, Diniz MS, Fernandes AR, Baptista PV.  2014.  Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 8(5):521-32.14condenantox.pdf14condenantoxsuppl.pdf
Barroso, T, Casimiro T, Ferraria A, Mattioli F, Aguiar-Ricardo A, Roque ACA.  2014.  Hybrid monoliths for magnetically-driven protein separations. Adv. Funct. Mater.. 24(28):4528–4541. AbstractWebsite

Monoliths represent powerful platforms for isolation of large molecules with high added value. This work presents a hybrid approach for antibody (Ab) capture and release. Using mostly natural polymers and clean processes, it is possible to create macroporous monoliths with well-defined porous networks, tuneable mechanical properties, and easy functionalization with a biomimetic ligand specific for Ab. Magnetic nanoparticles (MNPs) are embedded on the monolith network to confer a controlled magnetic response that facilitates and accelerates Ab recovery in the elution step. The hybrid monolithic systems prepared with agarose or chitosan/poly(vinyl alcohol) (PVA) blends exhibit promising binding capacities of Abs directly from cell-culture extracts (120 ± 10 mg Ab g−1 support) and controlled Ab magnetically-assisted elution yielding 95 ± 2% recovery. Moreover, a selective capture of mAbs directly from cell culture extracts is achieved yielding a final mAb preparation with 96% of purity.

Luis, DV, Silva J, Tomaz AI, de Almeida RF, Larguinho M, Baptista PV, Martins LM, Silva TF, Borralho PM, Rodrigues CM, Rodrigues AS, Pombeiro AJ, Fernandes AR.  2014.  Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies. J Biol Inorg Chem. 19(6):787-803.14luisjbic.pdf
Gouveia, JP, Bilo N, Gargiulo M, Giannakidis G, Gregório V, Duncan I, Nunes V, Robinson D, Seixas J, Valentim A.  2014.  InSMART - Integrative Smart City Planning - The case of Households in Évora. Urban Futures Squaring Circles: Proceedings, International Conference on Urban Futures Squaring Circles 2050,. , Calouste Gulbenkian Foundation: Institute of Social Sciences of the University of Lisbon and Calouste Gulbenkian Foundation Abstract

European policy has acknowledged the significance of local and regional communities for the
deployment of new low carbon technologies and their potential for sustainable energy production and use.
Several initiatives and programmes (e.g. Covenant of Mayors) have been set up to engage European cities in the
effort towards a low carbon future. At the same time, there is a critical need to improve comprehensive city
planning driven by an integrated approach and focused on cost benefit assessment towards sustainable energy
use. Hence, innovative tools and models to assess and perform in-depth analysis of the alternative measures
towards efficient energy use, will help pave the way to fully capture the potential of each city in the most
efficient (economically, socially and technically) way.
The InSMART concept brings together four European cities: Évora (Portugal), Cesena (Italy), Nottingham (UK)
and Trikala (Greece), and scientific organizations of these countries, to establish a methodology for enhancing
sustainable planning for city needs through an integrative and multidisciplinary planning approach, aiming to
developing detailed sustainable energy action plans. Such an approach will identify the optimum mix of short,
medium and long term projects and investments, addressing the efficiency of energy flows across various city
sectors with regards to economic, environmental and social criteria and will highlight priority actions.
Tools and models, like Geographic Information System, buildings models (CitySim and EnergyPlus) and
transport-based energy and carbon model, as well as a technological partial equilibrium energy model (TIMES),
are used to analyse, all the relevant sectors (buildings, industries, transports, waste and water management).
Furthermore, the cities buildings stocks are being characterized through an extensive 110-question survey
(around 410 door-to-door interviews) and will be modelled through a typology approach. Four hundred 20-
question surveys are also being carried out to evaluate transport and mobility patterns, supported on travel diaries and fulfilling different quotas for several variables (geographic location, days of the week, age and working
status) in order to assure representativeness of the data collected.
The main differences between rural and urban areas results from the building surveys and high-resolution
electricity consumption from smart meters for the Portuguese city of Évora are highlighted.

Gouveia, JP, Seixas J, Bilo N, Valentim A, Nunes V, Giannakidis G, Robinson D, Irons D, Gargiulo M.  2014.  Integrative Smart City Planning - Buildings and Mobility in Évora. 4th IAEE European Energy Conference - Sustainable Energy Policy and Strategies for Europe. , LUISS University, Rome, Italy.
loading