Export 1532 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Berg, AI, Brivio S, Brown S, Burr G, Deswal S, Deuermeier J, Gale E, Hwang H, Ielmini D, Indiveri G, Kenyon AJ, Kiazadeh A, Köymen I, Kozicki M, Li Y, Mannion D, Prodromakis T, Ricciardi C, Siegel S, Speckbacher M, Valov I, Wang W, Williams RS, Wouters D, Yang Y.  2019.  Synaptic and neuromorphic functions: General discussion. Faraday Discussions. 213:553-578. AbstractWebsite
n/a
Aono, M, Baeumer C, Bartlett P, Brivio S, Burr G, Burriel M, Carlos E, Deswal S, Deuermeier J, Dittmann R, Du H, Gale E, Hambsch S, Hilgenkamp H, Ielmini D, Kenyon AJ, Kiazadeh A, Kindsmüller A, Kissling G, Köymen I, Menzel S, Pla Asesio D, Prodromakis T, Santamaria M, Shluger A, Thompson D, Valov I, Wang W, Waser R, Williams RS, Wrana D, Wouters D, Yang Y, Zaffora A.  2019.  Valence change ReRAMs (VCM) - Experiments and modelling: General discussion. Faraday Discussions. 213:259-286. AbstractWebsite
n/a
Antónia Nunes, M, Pawlowski S, Costa ASG, Alves RC, Oliveira BMPP, Velizarov S.  2019.  Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Science of The Total Environment. 652:40-47. AbstractWebsite

Olive pomace is a semi-solid paste resulting from the two-phase olive oil production, being the most significant waste generated by this agro-industry. Olive pomace is reported as an environmental hazard due to its high content in phenolic compounds (phytotoxic). Nevertheless, these compounds, when recovered, can have impactful actions in different human physiological conditions, namely, skin protection, dysfunction treatment or diseases prevention. Therefore, their recovery from olive pomace is crucial for environmental and economical sustainability, without forgetting the functional challenge. In a previous work, lipid and aqueous fractions of olive pomace were studied regarding its major bioactive compounds. The present research aims to describe an environmentally friendly integrated approach to extract and concentrate (by a pressure-driven membrane processing) the phytotoxic compounds of olive pomace. Three types of polymeric composite membranes (NF90, NF270 and BW30) were tested. The composition of the resulting streams (permeates and concentrates) were compared and the process efficiency assessed based on: (1) antioxidant activity and total phenolic and flavonoid contents; (2) inorganic elemental composition (by Inductively Coupled Plasma Atomic Emission Spectroscopy); (3) pH, conductivity and total organic carbon; and (4) permeate flux, membranes' apparent target solutes rejection and fouling index. The BW30 membrane presented the lowest fouling index and was the most effective for extracts concentration, with no phenolic compounds in the permeates, preventing completely the loss of such compounds.

2018
Svahn, N, Moro {AJ }, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista {PV}, Fernandes {AR}, Lima {JC}, Rodríguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, oct. Chemistry - A European Journal. 24:14654–14667., Number 55: Wiley Abstract

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

Restani, {RB }, Pires {RF }, Tolmatcheva A, Cabral R, Baptista {PV}, Fernandes {AR}, Casimiro T, Bonifácio {VDB }, Aguiar-Ricardo A.  2018.  POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, oct. ChemistryOpen. 7:772–779., Number 10: Wiley-VCH Verlag | Wiley Open Access Abstract

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Ribeiro, {APC}, Anbu S, Alegria {ECBA}, Fernandes {AR }, Baptista {PV }, Mendes R, Matias {AS}, Mendes M, {Guedes da Silva} {MFC}, Pombeiro {AJL}.  2018.  Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, may. Biomedicine and Pharmacotherapy. 101:137–144.: Elsevier Abstract

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Peixoto, D, Ferreira EP, Lourenco AM, Johnson JL, Lobo AM, Polavarapu PL.  2018.  (R)-Metacycloprodigiosin-HCl: Chiroptical properties and structure, JUL. CHIRALITY. 30:932-942., Number 7 Abstract
n/a
Peixoto, D, Figueiredo M, Malta G, Roma-Rodrigues C, Baptista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM, Branco PS.  2018.  Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, JAN 31. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY. 2018:545-549., Number 4 Abstract
n/a
Peixoto, D, Figueiredo M, Malta G, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Barroso S, Carvalho {AL}, Afonso {CAM }, Ferreira {LM }, Branco {PS }.  2018.  Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, jan. European Journal of Organic Chemistry. 2018:545–549., Number 4: Wiley Abstract

A new and never before reported hetero-arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0 (±0.20) × 105 m–1], which is 10 × higher than that described for doxorubicin [Kb = 3.2 (±0.23) × 104 m–1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed–CT-DNA system with a quenching constant (KSV) of 3.3 (±0.3) × 103 m–1 calculated by the Stern–Volmer equation.

Martins, S, Avo J, Lima J, Nogueira J, Andrade L, Mendes A, Pereira A, Branco PS.  2018.  Styryl and phenylethynyl based coumarin chromophores for dye sensitized solar cells, FEB 15. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY. 353:564-569. Abstract
n/a
Pedrosa, P, Mendes R, Cabral R, Martins {LMDRS }, Baptista {PV}, Fernandes {AR}.  2018.  Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells, dec. Scientific Reports. 8, Number 1: Nature Publishing Group Abstract

Despite great advances in the fight against cancer, traditional chemotherapy has been hindered by the dose dependent adverse side effects that reduce the usable doses for effective therapy. This has been associated to drug resistance in tumor cells that often cause relapse and therapy failure. These drawbacks have been tackled by combining different therapeutic regiments that prevent drug resistance while decreasing the chemotherapy dose required for efficacious ablation of cancer. In fact, new metallic compounds have been in a continuous development to extend the existing chemotherapy arsenal for these combined regimens. Here, we demonstrate that combination of a metallic compound (TS265), previously characterized by our group, with photothermy circumvents cells resistant to Doxorubicin (DOX). We first engendered a colorectal carcinoma cell line (HCT116) highly resistant to DOX, whose viability was diminished after administration of TS265. Cancer cell death was potentiated by challenging these cells with 14 nm spherical gold nanoparticles followed by laser irradiation at 532 nm. The combination of TS265 with photothermy lead to 65% cell death of the DOX resistant cells without impacting healthy cells. These results support the use of combined chemotherapy and photothermy in the visible spectrum as an efficient tool for drug resistant tumors.

Palomar, T.  2018.  Characterization of the alteration processes of historical glasses on the seabed, 2018. 214:391-401. AbstractWebsite

Glass objects are common in shipwrecks since they are associated with ordinary glassware or commercial products. The alteration pathologies of historical glasses from two wrecks from the Mediterranean Sea were analyzed to characterize their alteration mechanisms. The results of this research proved that the alteration layers presented a moderate content of Na2O, similar to the average salinity of the ocean, and a high content of Al2O3 due to an extremely basic environment during the corrosion process. The biofouling layer protected the glass surfaces. Dark deposits with a high content of MnO were observed in the most instable glass.

Pedrosa, P, Mendes R, Cabral R, Martins LMDRS, Baptista PV, Fernandes AR.  2018.  Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells, 2018. Scientific Reports. 8(1):11429. AbstractWebsite

Despite great advances in the fight against cancer, traditional chemotherapy has been hindered by the dose dependent adverse side effects that reduce the usable doses for effective therapy. This has been associated to drug resistance in tumor cells that often cause relapse and therapy failure. These drawbacks have been tackled by combining different therapeutic regiments that prevent drug resistance while decreasing the chemotherapy dose required for efficacious ablation of cancer. In fact, new metallic compounds have been in a continuous development to extend the existing chemotherapy arsenal for these combined regimens. Here, we demonstrate that combination of a metallic compound (TS265), previously characterized by our group, with photothermy circumvents cells resistant to Doxorubicin (DOX). We first engendered a colorectal carcinoma cell line (HCT116) highly resistant to DOX, whose viability was diminished after administration of TS265. Cancer cell death was potentiated by challenging these cells with 14 nm spherical gold nanoparticles followed by laser irradiation at 532 nm. The combination of TS265 with photothermy lead to 65% cell death of the DOX resistant cells without impacting healthy cells. These results support the use of combined chemotherapy and photothermy in the visible spectrum as an efficient tool for drug resistant tumors.

Gomes, SE, Pereira DM, Roma-Rodrigues C, Fernandes AR, Borralho PM, Rodrigues CMP.  2018.  Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells, 2018. PLoS One. 13(1):e0191607. AbstractWebsite

MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.

Ribeiro, APC, Anbu S, Alegria ECBA, Fernandes AR, Baptista PV, Mendes R, Matias AS, Mendes M, Guedes da Silva MFC, Pombeiro AJL.  2018.  Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, 2018. Biomed Pharmacother. 101:137-144. AbstractWebsite

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5+/-0.1muM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0+/-0.1muM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Bule, P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA.  2018.  Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction, 2018. Scientific Reports. 8(1):6987. AbstractWebsite

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.

Svahn, N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodriguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, 2018. Chemistry. 24(55):14654-14667. AbstractWebsite

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 mum) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 mum), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-Hpi contacts as the main driving forces for the three-dimensional packing in these molecules.

Restani, RB, Pires RF, Tolmatcheva A, Cabral R, Baptista PV, Fernandes AR, Casimiro T, Bonifácio VDB, Aguiar-Ricardo A.  2018.  POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, 2018. 7(10):772-779. AbstractWebsite

Abstract POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Peixoto, D, Figueiredo M, Malta G, Roma-Rodrigues C, Baptista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM, Branco PS.  2018.  Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, 2018. 2018(4):545-549. AbstractWebsite

A new and never before reported hetero-arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0 (±0.20) × 105 m–1], which is 10 × higher than that described for doxorubicin [Kb = 3.2 (±0.23) × 104 m–1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed–CT-DNA system with a quenching constant (KSV) of 3.3 (±0.3) × 103 m–1 calculated by the Stern–Volmer equation.

Dias, D, Bernardo M, Lapa N, Pinto F, Matos I, Fonseca I.  2018.  Activated carbons from the Co-pyrolysis of rice wastes for Cr(III) removal. Chemical Engineering Transactions. 65:601-606.
Pádua, AC, Palma S, Gruber J, Gamboa H, Roque ACA.  2018.  Design and Evolution of an Opto-electronic Device for VOCs Detection. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies. :48-55. AbstractPDFWebsite

Electronic noses (E-noses) are devices capable of detecting and identifying Volatile Organic Compounds (VOCs) in a simple and fast method. In this work, we present the development process of an opto-electronic device based on sensing films that have unique stimuli-responsive properties, altering their optical and electrical properties, when interacting with VOCs. This interaction results in optical and electrical signals that can be collected, and further processed and analysed. Two versions of the device were designed and assembled. E-nose V1 is an optical device, and E-nose V2 is a hybrid opto-electronic device. Both E-noses architectures include a delivery system, a detection chamber, and a transduction system. After the validation of the E-nose V1 prototype, the E-nose V2 was implemented, resulting in an easy-to-handle, miniaturized and stable device. Results from E-nose V2 indicated optical signals reproducibility, and the possibility of coupling the electrical signals to the opt ical response for VOCs sensing.

Carreira, C, Mestre O, Nunes RF, Moura I, Pauleta SR.  2018.  Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PEERJ. 6:DOI:10.7717/peerj.5603.
Ruivo, A, Coutino-Gonzalez E, Santos MM, Baekelant W, Fron E, Roeffaers MBJ, Pina F, Hofkens J, C.A.T. L.  2018.  Highly Photoluminescent Sulfide Clusters Confined in Zeolites. Journal of Physical Chemistry C. 122:14761-14770.
Reckien, D, Heidrich O, Church J, Pietrapertos F, De Gregorio-Hurtado S, D'Alonzo V, Foley A, Simoes SG, Lorencová EK, Orruk H, Orrum K, Wejs A, Flacke J, Olazabal M, Geneletti D, Feliu E, Vasilier S, Nador C, Krook-Riekkola A, Matosović M, A. Fokaides P, I. Ioannou B, Flamos A, Spyridaki N.  2018.  How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28 Journal of Cleaner Production. doi: 10.1016/j.jclepro.2018.03.220. 191:207-219.