Machado, JF, Sequeira D, Marques F, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Fernandes AR, Morais TS.
2020.
New copper(I) complexes selective for prostate cancer cells, 2020. Dalton Trans. 49(35):12273-12286.
AbstractA new family of eighteen Cu(i) complexes of the general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand and LL represents an N,O-heteroaromatic bidentate ligand, has been synthesized and fully characterized by classical analytical and spectroscopic methods. Five complexes of this series were also characterized by single crystal X-ray diffraction studies. The cytotoxicity of all compounds was evaluated in breast (MCF7) and prostate (LNCap) human cancer cells and in a normal prostate cell line (RWPE). In general, all compounds showed higher cytotoxicity for the prostate cancer cells than for the breast cells, with IC50 values in the range 0.2-2 muM after 24 h of treatment. The most cytotoxic compound, [Cu(dppe)(2-ap)][BF4] (16), where dppe = 1,2-bis(diphenylphosphano) ethane and 2-ap = 2-acetylpyridine, showed a high level of cellular internalization, generation of intracellular ROS and activation of the cell death mechanism via apoptosis/necrosis. Owing to its high cytotoxic activity for LNCap cells, being 70-fold higher than that for normal prostate cells (RWPE), complex (16) was found to be the most promising for further research in prostate cancer models.
Busila, M, Tabacaru A, Mussat V, Vasile BS, Neasu IA, Pinheiro T, Roma-Rodrigues C, Baptista PV, Fernandes AR, Matos AP, Marques F.
2020.
Size-Dependent Biological Activities of Fluorescent Organosilane-Modified Zinc Oxide Nanoparticles, 2020. J Biomed Nanotechnol. 16(2):137-152.
AbstractSurface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2-10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3-4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.
Oliveira, AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Pereira IAC.
2020.
Towards the mechanistic understanding of enzymatic CO2 reduction, 2020. ACS CatalysisACS Catalysis. : American Chemical Society
AbstractReducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.
Strohmeier, P, Honnet C, Perner-Wilson H, Teyssier M, Fruchard B, Baptista AC, Steimle J.
2020.
Demo of PolySense: How to Make Electrically Functional Textiles. CHI Conference on Human Factors in Computing Systems. :1-4.
AbstractWe demonstrate a simple and accessible method for enhancing textiles with custom piezo-resistive properties. Based on in-situ polymerization, our method offers seamless integration at the material level, preserving a textile's haptic and mechanical properties. We demonstrate how to enhance a wide set of fabrics and yarns using only readily available tools. During each demo session, conference attendees may bring textile samples which will be polymerized in a shared batch. Attendees may keep these samples. While the polymerization is happening, attendees can inspect pre-made samples and explore how these might be integrated in functional circuits. Examples objects created using polymerization include rapid manufacturing of on-body interfaces, tie-dyed motion-capture clothing, and zippers that act as potentiometers.
dos Santos, LM, Bernard FL, Polesso BB, Pinto IS, Frankenberg CC, Corvo MC, Almeida PL, Cabrita E, Menezes S, Einloft S.
2020.
Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. Journal of Environmental Management. 268:110340.
AbstractCO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).
Duczinski, R, Polesso BB, Bernard FL, Ferrari HZ, Almeida PL, Corvo MC, Cabrita EJ, Menezes S, Einloft S.
2020.
Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. Journal of Environmental Chemical Engineering.
AbstractImidazolium-based ionic liquids (ILs) with different cation alkyl chain ([i-C5mim] or [C4mim]) and inorganic anions ([Cl−], [Tf2N−], [PF6−] and [DCA−]) were synthesized and immobilized in commercial mesoporous silica. The synthesized supported ILs (SILs) were characterized using NMR, FTIR, TGA, BET, SEM and TEM. CO2 sorption capacity, reusability and CO2/N2 selectivity were assessed by the pressure-decay technique. The effects of IL concentration, cation and anion chemical structure in CO2 sorption capacity and CO2/N2 separation performance were evaluated. Tests evidenced that the presence of branching on the cation alkyl side chain increases CO2/N2 selectivity. The immobilization of the IL [i-C5TPIm][Cl] on mesoporous silica in different concentrations (50, 20, 10 and 5 %) revealed that lower IL concentration results in higher CO2 sorption capacity. Immobilization of ILs containing fluorinated anions at low concentrations in the mesoporous silica support may promote the improvement of the CO2/N2 selectivity without interfering on CO2 sorption capacity of the original support. CO2 sorption capacity value shown by sample SIL-5 % - [i-C5TPIm][Tf2N] (79.50 ± 0.70 mg CO2 g-1) was close to the value obtained for the pristine mesoporous silica (81.70 ± 2.20 mg CO2 g-1) and the selectivity (4.30 ± 0.70) was more than twice of the one obtained for the support alone (2.32 ± 0.4). Recycle tests demonstrated that the ILs immobilized in mesoporous silica samples are stable, providing a new option to be used in CO2 capture processes.
Esteves, C, Ramou E, Porteira ARP, Barbosa AJM, Roque ACA.
2020.
Seeing the Unseen: The Role of Liquid Crystals in Gas‐Sensing Technologies. Advanced Optical Materials. 1902117:1-29.
AbstractFast, real-time detection of gases and volatile organic compounds (VOCs) is
an emerging research field relevant to most aspects of modern society, from
households to health facilities, industrial units, and military environments.
Sensor features such as high sensitivity, selectivity, fast response, and low
energy consumption are essential. Liquid crystal (LC)-based sensors fulfill
these requirements due to their chemical diversity, inherent self-assembly
potential, and reversible molecular order, resulting in tunable stimuliresponsive soft materials. Sensing platforms utilizing thermotropic uniaxial
systems—nematic and smectic—that exploit not only interfacial phenomena,
but also changes in the LC bulk, are demonstrated. Special focus is given to
the different interaction mechanisms and tuned selectivity toward gas and
VOC analytes. Furthermore, the different experimental methods used to
transduce the presence of chemical analytes into macroscopic signals are discussed and detailed examples are provided. Future perspectives and trends
in the field, in particular the opportunities for LC-based advanced materials in
artificial olfaction, are also discussed.