Export 718 results:
Sort by: Author Title Type [ Year  (Desc)]
2001
Rebelo, JM, Dias JM, Huber R, Moura JJ, Romao MJ.  2001.  Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 A, Oct. J Biol Inorg Chem. 6:791-800., Number 8 AbstractWebsite

The sulfate-reducing bacterium aldehyde oxidoreductase from Desulfovibrio gigas (MOP) is a member of the xanthine oxidase family of enzymes. It has 907 residues on a single polypeptide chain, a molybdopterin cytosine dinucleotide (MCD) cofactor and two [2Fe-2S] iron-sulfur clusters. Synchrotron data to almost atomic resolution were collected for improved cryo-cooled crystals of this enzyme in the oxidized form. The cell constants of a=b=141.78 A and c=160.87 A are about 2% shorter than those of room temperature data, yielding 233,755 unique reflections in space group P6(1)22, at 1.28 A resolution. Throughout the entire refinement the full gradient least-squares method was used, leading to a final R factor of 14.5 and Rfree factor of 19.3 (4sigma cut-off) with "riding" H-atoms at their calculated positions. The model contains 8146 non-hydrogen atoms described by anisotropic displacement parameters with an observations/parameters ratio of 4.4. It includes alternate conformations for 17 amino acid residues. At 1.28 A resolution, three Cl- and two Mg2+ ions from the crystallization solution were clearly identified. With the exception of one Cl- which is buried and 8 A distant from the Mo atom, the other ions are close to the molecular surface and may contribute to crystal packing. The overall structure has not changed in comparison to the lower resolution model apart from local corrections that included some loop adjustments and alternate side-chain conformations. Based on the estimated errors of bond distances obtained by blocked least-squares matrix inversion, a more detailed analysis of the three redox centres was possible. For the MCD cofactor, the resulting geometric parameters confirmed its reduction state as a tetrahydropterin. At the Mo centre, estimated corrections calculated for the Fourier ripples artefact are very small when compared to the experimental associated errors, supporting the suggestion that the fifth ligand is a water molecule rather than a hydroxide. Concerning the two iron-sulfur centres, asymmetry in the Fe-S distances as well as differences in the pattern of NH.S hydrogen-bonding interactions was observed, which influences the electron distribution upon reduction and causes non-equivalence of the individual Fe atoms in each cluster.

Di Rocco, G, Pereira AS, Bursakov SA, Gavel OY, Rusnak F, Lampreia J, Moura JJG, Moura I.  2001.  Cloning of a novel Mo-Cu containing protein from Desulfovibrio.gigas, Aug. Journal Of Inorganic Biochemistry. {86}:{202}., Number {1}, 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA: ELSEVIER SCIENCE INC Abstract
n/a
Raaijmakers, H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJ, Romao MJ.  2001.  Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography, Apr. J Biol Inorg Chem. 6:398-404., Number 4 AbstractWebsite

The tungsten-containing formate dehydrogenase (W-FDH) isolated from Desulfovibrio gigas has been crystallized in space group P2(1), with cell parameters a = 73.8 A, b = 111.3 A, c = 156.6 A and beta = 93.7 degrees. These crystals diffract to beyond 2.0 A on a synchrotron radiation source. W-FDH is a heterodimer (92 kDa and 29 kDa subunits) and two W-FDH molecules are present in the asymmetric unit. Although a molecular replacement solution was found using the periplasmic nitrate reductase as a search model, additional phasing information was needed. A multiple-wavelength anomalous dispersion (MAD) dataset was collected at the W- and Fe-edges, at four different wavelengths. Anomalous and dispersive difference data allowed us to unambiguously identify the metal atoms bound to W-FDH as one W atom with a Se-cysteine ligand as well as one [4Fe-4S] cluster in the 92 kDa subunit, and three additional [4Fe-4S] centers in the smaller 29 kDa subunit. The D. gigas W-FDH was previously characterized based on metal analysis and spectroscopic data. One W atom was predicted to be bound to two molybdopterin guanine dinucleotide (MGD) pterin cofactors and two [4Fe-4S] centers were proposed to be present. The crystallographic data now reported reveal a selenium atom (as a Se-cysteine) coordinating to the W site, as well as two extra [4Fe-4S] clusters not anticipated before. The EPR data were re-evaluated in the light of these new results.

Calhorda, MJ, Drew MGB, Felix V, Fonseca LP, Gamelas CA, Godinho S, Goncalves IS, Hunstock E, Lopes JP, Parola AJ, Pina F, Romao CC, Santos AG.  2001.  Metal-metal interaction in polynuclear complexes with cyanide bridges: synthesis, characterisation, and theoretical studies, 2001. Journal of Organometallic Chemistry. 632:94-106. AbstractWebsite

The reaction of the cyanide anion [M(CO)(5)CN](-) (M = Cr or Mo) with metallocenes of Groups 4 and 6 produced polynuclear complexes of the type [CpCp 'M(CO){-NC-M ' (CO)(5)}]BF4 (M = M0, W; M ' = Mo, Cr, Cp '= Cp, Ind), Cp2TiCl{-NC-Mo(CO)(5)} and Cp2Ti{-NC-Mo(CO)(5)}(2). These complexes were characterised by H-1-, C-13- and Mo-95-NMR, IR and UV-vis spectroscopies, elemental analysis and examined by cyclic voltammetry. These methods show that the [M(CO)(5)CN]- ligands shift the electron density towards the metallocene centres. The complex [Cp2W(CO){-NC-Mo(CO)(5)}](+) is additionally examined by single crystal X-ray structure determination. The Density Functional Theory (DFT) calculations with the ADF program were performed on selected compounds to understand the nature of the redox processes taking place. Compared with a nitrile, the coordination of a [M(CO)-,CN]- fragment to the metallocene moiety does not significantly change the geometrical features. but leads to the stabilisation of the HOMO of the latter. with all the oxidation processes occurring in the pentacarbonyl moiety of the binuclear species. Time-dependent DFT calculations were used to identify the band appearing in the visible spectrum of Cp2TiCl{-NC-Mo(CO)(5)} as a Mo to Ti charge transfer. (C) 2001 Elsevier Science BN. All rights reserved.

Salgueiro, CA, da Costa PN, Turner DL, Messias AC, van Dongen WMAM, Saraiva LM, Xavier AV.  2001.  Effect of Hydrogen-Bond Networks in Controlling Reduction Potentials in Desulfovibrio vulgaris (Hildenborough) Cytochrome c3 Probed by Site-Specific Mutagenesis. Biochemistry. 40(32):9709-9716. AbstractWebsite

Cytochromes c3 isolated from Desulfovibrio spp. are periplasmic proteins that play a central role in energy transduction by coupling the transfer of electrons and protons from hydrogenase. Comparison between the oxidized and reduced structures of cytochrome c3 isolated from Desulfovibrio vulgaris (Hildenborough) show that the residue threonine 24, located in the vicinity of heme III, reorients between these two states [Messias, A. C., Kastrau, D. H. W., Costa, H. S., LeGall, J., Turner, D. L., Santos, H., and Xavier, A. V. (1998) J. Mol. Biol. 281, 719−739]. Threonine 24 was replaced with valine by site-directed mutagenesis to elucidate its effect on the redox properties of the protein. The NMR spectra of the mutated protein are very similar to those of the wild type, showing that the general folding and heme core architecture are not affected by the mutation. However, thermodynamic analysis of the mutated cytochrome reveals a large alteration in the microscopic reduction potential of heme III (75 and 106 mV for the protonated forms of the fully reduced and oxidized states, respectively). The redox interactions involving this heme are also modified, while the remaining heme−heme interactions and the redox−Bohr interactions are less strongly affected. Hence, the order of oxidation of the hemes in the mutated cytochrome is different from that in the wild type, and it has a higher overall affinity for electrons. This is consistent with the replacement of threonine 24 by valine preventing the formation of a network of hydrogen bonds, which stabilizes the oxidized state. The mutated protein is unable to perform a concerted two-electron step between the intermediate oxidation stages, 1 and 3, which can occur in the wild-type protein. Thus, replacing a single residue unbalances the global network of cooperativities tuned to control thermodynamically the directionality of the stepwise electron transfer and may affect the functionality of the protein.

Mano, JF, Lanceros-Méndez S, Nunes AM, Dionísio M.  2001.  Temperature Calibration in dielectric measurements. Journal of Thermal Analysis and Calorimetry. 65:37-49.Website
Romão, MJ, Dias JM, Moura I.  2001.  Dissimilatory Nitrate Reductase. Handbook of Metalloproteins . (Messerschmidt, A., Huber, R., Poulos, T., Wieghardt, K., Eds.).:1075-1085. Abstract
n/a
Dias, FB, Lima JC, Pierola IF, Horta A, Macanita AL.  2001.  Internal dynamics of poly(methylphenylsiloxane) chains as revealed by picosecond time resolved fluorescence. Journal of Physical Chemistry a. 105:10286-10295., Number 45 Abstract
n/a
Albelda, MT, Bernardo MA, Diaz P, Garcia-Espana E, de Melo JS, Pina F, Soriano C, Santiago VLE.  2001.  Polyamines containing naphthyl groups as pH-regulated molecular machines driven by light. Chemical Communications. :1520-1521., Number 16 AbstractWebsite
n/a
Carvalho, AL, Dias JM, Sanz L, Romero A, Calvete JJ, Romao MJ.  2001.  Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma. Acta Crystallographica Section D-Biological Crystallography. 57:1180-1183. AbstractWebsite
n/a
Rebelo, JM, Dias JM, Huber R, Moura JJG, Romao MJ.  2001.  Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 angstrom. Journal of Biological Inorganic Chemistry. 6:791-800., Number 8 AbstractWebsite
n/a
Raaijmakers, H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJG, Romao MJ.  2001.  Tungsten-containing formats dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography. Journal of Biological Inorganic Chemistry. 6:398-404., Number 4 AbstractWebsite
n/a
2000
Rebelo, J, Macieira S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJ, Moura I, Romao MJ.  2000.  Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774, Mar 17. J Mol Biol. 297:135-46., Number 1 AbstractWebsite

The aldehyde oxidoreductase (MOD) isolated from the sulfate reducer Desulfovibrio desulfuricans (ATCC 27774) is a member of the xanthine oxidase family of molybdenum-containing enzymes. It has substrate specificity similar to that of the homologous enzyme from Desulfovibrio gigas (MOP) and the primary sequences from both enzymes show 68 % identity. The enzyme was crystallized in space group P6(1)22, with unit cell dimensions of a=b=156.4 A and c=177.1 A, and diffraction data were obtained to beyond 2.8 A. The crystal structure was solved by Patterson search techniques using the coordinates of the D. gigas enzyme. The overall fold of the D. desulfuricans enzyme is very similar to MOP and the few differences are mapped to exposed regions of the molecule. This is reflected in the electrostatic potential surfaces of both homologous enzymes, one exception being the surface potential in a region identifiable as the putative docking site of the physiological electron acceptor. Other essential features of the MOP structure, such as residues of the active-site cavity, are basically conserved in MOD. Two mutations are located in the pocket bearing a chain of catalytically relevant water molecules. As deduced from this work, both these enzymes are very closely related in terms of their sequences as well as 3D structures. The comparison allowed confirmation and establishment of features that are essential for their function; namely, conserved residues in the active-site, catalytically relevant water molecules and recognition of the physiological electron acceptor docking site.

Morelli, X, Dolla A, Czjzek M, Palma PN, Blasco F, Krippahl L, Moura JJ, Guerlesquin F.  2000.  Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553-ferredoxin complex, Mar 14. Biochemistry. 39:2530-7., Number 10 AbstractWebsite

The combination of docking algorithms with NMR data has been developed extensively for the studies of protein-ligand interactions. However, to extend this development for the studies of protein-protein interactions, the intermolecular NOE constraints, which are needed, are more difficult to access. In the present work, we describe a new approach that combines an ab initio docking calculation and the mapping of an interaction site using chemical shift variation analysis. The cytochrome c553-ferredoxin complex is used as a model of numerous electron-transfer complexes. The 15N-labeling of both molecules has been obtained, and the mapping of the interacting site on each partner, respectively, has been done using HSQC experiments. 1H and 15N chemical shift analysis defines the area of both molecules involved in the recognition interface. Models of the complex were generated by an ab initio docking software, the BiGGER program (bimolecular complex generation with global evaluation and ranking). This program generates a population of protein-protein docked geometries ranked by a scoring function, combining relevant stabilization parameters such as geometric complementarity surfaces, electrostatic interactions, desolvation energy, and pairwise affinities of amino acid side chains. We have implemented a new module that includes experimental input (here, NMR mapping of the interacting site) as a filter to select the accurate models. Final structures were energy minimized using the X-PLOR software and then analyzed. The best solution has an interface area (1037.4 A2) falling close to the range of generally observed recognition interfaces, with a distance of 10.0 A between the redox centers.

Duarte, RO, Archer M, Dias JM, Bursakov S, Huber R, Moura I, Romao MJ, Moura JJ.  2000.  Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774, Feb 24. Biochem Biophys Res Commun. 268:745-9., Number 3 AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romao, M. J., Knablein, J., Huber, R., and Moura, J. J. G. (1997) Prog. Biophys. Mol. Biol. 68, 121-144). The enzyme was purified to homogeneity from extracts of Desulfovibrio desulfuricans (Dd) ATCC 27774, a sulfate reducer that can use sulfate or nitrate as terminal respiratory substrates. The protein (AORDd) is described as a homodimer (monomer, circa 100 kDa), contains a Mo-MCD pterin, 2 x [2Fe-2S] clusters, and lacks a flavin group. Visible and EPR spectroscopies indicate a close similarity with the AOR purified from Desulfovibrio gigas (Dg) (Barata, B. A. S., LeGall, J., and Moura, J. J. G. (1993) Biochemistry 32, 11559-11568). Activity and substrate specificity for different aldehydes were determined. EPR studies were performed in native and reduced states of the enzyme and after treatment with ethylene glycol and dithiothreitol. The AORDd was crystallized using ammonium sulfate as precipitant and the crystals belong to the space group P6(1)22, with unit cell dimensions a = b = 156.4 and c = 177.1 A. These crystals diffract to beyond 2.5 A resolution and a full data set was measured on a rotating anode generator. The data were used to solve the structure by Patterson Search methods, using the model of AORDg.

Dias, JM, Cunha CA, Teixeira S, Almeida G, Costa C, Lampreia J, Moura JJ, Moura I, Romao MJ.  2000.  Crystallization and preliminary X-ray analysis of a membrane-bound nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Feb. Acta Crystallogr D Biol Crystallogr. 56:215-7., Number Pt 2 AbstractWebsite

Nitrite reductase from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is a multihaem (type c) membrane-bound enzyme that catalyzes the dissimilatory conversion of nitrite to ammonia. Crystals of the oxidized form of this enzyme were obtained using PEG and CaCl(2) as precipitants in the presence of 3--(decylmethylammonium)propane-1-sulfonate and belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 78.94, b = 104.59, c = 143.18 A. A complete data set to 2.30 A resolution was collected using synchrotron radiation at the ESRF. However, the crystals may diffract to beyond 1.7 A and high-resolution data will be collected in the near future.

Brown, K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JJ, Moura I, Tegoni M, Cambillau C.  2000.  Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur, Dec 29. J Biol Chem. 275:41133-6., Number 52 AbstractWebsite

Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.

Battistuzzi, G, D'Onofrio M, Borsari M, Sola M, Macedo AL, Moura JJ, Rodrigues P.  2000.  Redox thermodynamics of low-potential iron-sulfur proteins, Dec. J Biol Inorg Chem. 5:748-60., Number 6 AbstractWebsite

The enthalpy and entropy changes associated with protein reduction (deltaHdegrees,(rc), deltaSdegrees,(rc)) were determined for a number of low-potential iron-sulfur proteins through variable temperature direct electrochemical experiments. These data add to previous estimates making available, overall, the reduction thermodynamics for twenty species from various sources containing all the different types of metal centers. These parameters are discussed with reference to structural data and calculated electrostatic metal-environment interaction energies, and redox properties of model complexes. This work, which is the first systematic investigation on the reduction thermodynamics of Fe-S proteins, contributes to the comprehension of the determinants of the differences in reduction potential among different protein families within a novel perspective. Moreover, comparison with analogous data obtained previously for electron transport (ET) metalloproteins with positive reduction potentials, i.e., cytochromes c, blue copper proteins, and HiPIPs, helps our understanding of the factors controlling the reduction potential in ET species containing different metal cofactors. The main results of this work can be summarized as follows.

Prudencio, M, Pereira AS, Tavares P, Besson S, Cabrito I, Brown K, Samyn B, Devreese B, Van Beeumen J, Rusnak F, Fauque G, Moura JJ, Tegoni M, Cambillau C, Moura I.  2000.  Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617, Apr 11. Biochemistry. 39:3899-907., Number 14 AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

Dionísio, M, Fernandes AC, Mano JF, Correia NT, Sousa RC.  2000.  Relaxation Studies in PEO/PMMA Blends. Macromolecules. 33:1002-1011.Website
Dionísio, M, Sotomayor J.  2000.  A Surface Chemistry Experiment Using an Inexpensive W Contact Angle Goniometer. Journal of Chemical Education. 77(1):59-62.Website
Dias, FB, Lima JC, Macanita AL, Clarson SJ, Horta A, Pierola IF.  2000.  Anomalous fluorescence of linear poly(methylphenylsiloxane) in dilute solution at temperatures below-50 degrees C. Macromolecules. 33:4772-4779., Number 13 Abstract
n/a
Duarte, RO, Archer M, Dias JM, Bursakov S, Huber R, Moura I, Romao MJ, Moura JJG.  2000.  Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774. Biochemical and Biophysical Research Communications. 268:745-749., Number 3 AbstractWebsite
n/a
Dias, JM, Cunha CA, Teixeira S, Almeida G, Costa C, Lampreia J, Moura JJG, Moura I, Romao MJ.  2000.  Crystallization and preliminary X-ray analysis of a membrane-bound nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Acta Crystallographica Section D-Biological Crystallography. 56:215-217. AbstractWebsite
n/a
Dias, FB, Lima JC, Macanita AL, Horta A, Pierola IF.  2000.  Dynamics of cyclic methylphenyltrisiloxane in the picosecond to nanosecond time range. Journal of Physical Chemistry a. 104:17-24., Number 1 Abstract
n/a
loading