Vidinha, P, Lourenco NMT, Pinheiro C, Bras AR, Carvalho T, Santos-Silva T, Mukhopadhyay A, Romao MJ, Parola J, Dionisio M, Cabral JMS, Afonso CAM, Barreiros S.
2008.
Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chemical Communications. :5842-5844., Number 44
Abstractn/a
Viegas, A, Bras NF, Cerqueira NMFSA, Fernandes PA, Prates JAM, Fontes CMGA, Bruix M, Romao MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ.
2008.
Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach. Febs Journal. 275:2524-2535., Number 10
Abstractn/a
Gavel, OY, Bursakov SA, Di Rocco G, Trincao J, Pickering IJ, George GN, Calvete JJ, Shnyrov VL, Brondino CD, Pereira AS, Lampreia J, Tavares P, Moura JJG, Moura I.
2008.
A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774. Journal Of Inorganic Biochemistry. {102}:{1380-1395}., Number {5-6}
AbstractAdenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the ``LID'' domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.
Najmudin, S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NMFSA, Romao CC, Moura I, Moura JJG, Brondino CD, Romao MJ.
2008.
Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. Journal of Biological Inorganic Chemistry. 13:737-753., Number 5
Abstractn/a
Fortunato, E, Correia N, Barquinha P, Pereira LÍ, Goncalves G\c{C}alo, Martins R.
2008.
{High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper}. IEEE Electron Device Letters. 29:988–990., Number 9
AbstractIn this letter, we report for the first time the use of a sheet of cellulose-fiber-based paper as the dielectric layer used in oxide-based semiconductor thin-film field-effect transis- tors (FETs). In this new approach, we are using the cellulose– fiber-based paper in an “interstrate” structure since the device is built on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (> 30 cm2/Vs), drain–source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhance- ment n-type operation, and subthreshold gate voltage swing of 0.8 V/decade. The cellulose-fiber-based paper FETs’ character- istics have been measured in air ambient conditions and present good stability, after two months of being processed. The obtained results outpace those of amorphous Si thin-film transistors (TFTs) and rival with the same oxide-based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low– cost substrates as well as their very low operating bias delin- eates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID, and point-of-care systems for self-analysis in bioapplications, among others.