Aroso, IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte ARC.
2016.
Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics. 98:57-66.
Echeverria, C, Fernandes SN, Almeida PL, Godinho MH.
2016.
Effect of cellulose nanocrystals in a cellulosic liquid crystal behaviour under low shear (regime I): Structure and molecular dynamics. European Polymer Journal. 84:675-684.
AbstractIn the field of cellulosic liquid crystals, attempts to establish the relationship between structure/properties have been developed. Above a critical concentration in an aqueous solution, hydroxypropylcellulose self-assembles in order to form cholesteric liquid crystal phases (LC-HPC). In this work we aim to understand how the incorporation of a low content of cellulose nanocrystals (CNC) within LC-HPC/H2O (50 wt%), could influence the behaviour of the system when subjected to low shear rates, where the cholesteric phase still persists. The analysis of the deuterium spectrum and the T2 (transversal relaxation) values confirm that the mobility of LC-HPC at low shear rates is restricted due to CNC, and consequently so is the flow of the cholesteric polydomains. These effects are more evident in the LC-HPC sample containing 2 wt% of CNC; besides needing more strain units to induce some degree of order, the achieved degree of order is recovered faster when compared to the reference sample.
Granadeiro, CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Van Deun R, de Castro B, Balula SS.
2016.
A novel red emitting material based on polyoxometalate@ periodic mesoporous organosilica. Microporous and Mesoporous Materials. 234:248-256.
AbstractThe first lanthanopolyoxometalate-supported bifunctional periodic mesoporous organosilica (BPMO) composite is here reported. The incorporation of decatunsgstoeuropate anions ([Eu(W5O18)2]9−) within the porous channels of an ethylene-bridged TMAPS-functionalized BPMO produced a luminescent material exhibiting a strong red emission under UV irradiation. Photoluminescence studies showed an efficient energy transfer process to the lanthanide emitting center in the material (antenna effect). A significant change in the coordination environment of Eu3+ ions was observed after its incorporation into the TMAPS-functionalized material. The possible reason for this is discussed within the paper.
Craveiro, R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionísio M, Barreiros S, Reis RL, Duarte ARC, Paiva A.
2016.
Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids. 215:534-540.
João, C, Almeida R, Silva JC, Borges JP.
2016.
A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering. Materials Letters. 185:407-410.
AbstractHydroxyapatite (HAp) scaffolds with uniform pore size and interconnected pore network were constructed based on the inverted colloidal crystal (ICC) geometry and a simple sol-gel formulation. Monodisperse polystyrene microspheres were self-assembled and annealed into a hexagonal close packed structure. HAp sol-gel was infiltrated in this template followed by thermal treatment for simultaneous HAp matrix sintering and polymeric colloidal crystal calcination. The resultant ICC scaffolds exhibit an ordered architecture that was able to offer a favorable environment for human osteoblasts adhesion and proliferation, an essential feature for bone ingrowth in tissue engineering applications.
Santos, L, Silveira CM, Elangovan E, Neto JP, Nunes D, Pereira L, Martins R, Viegas J, Moura JJG, Todorovic S, Almeida MG, Fortunato EM.
2016.
Synthesis of WO3 nanoparticles for biosensing applications. Sensors and Actuators B: Chemical. 223:186-194.
Jesus, T F, Grosso AR, Almeida-Val VMF, Coelho MM.
2016.
Transcriptome profiling of two Iberian freshwater fish exposed to thermal stress. Journal of Thermal Biology. 55:54–61.: Elsevier
AbstractThe congeneric freshwater fish Squalius carolitertii and S. torgalensis inhabit different Iberian regions with distinct climates; Atlantic in the North and Mediterranean in the South, respectively. While northern regions present mild temperatures, fish in southern regions often experience harsh temperatures and droughts. Previous work with two hsp70 genes suggested that S. torgalensis is better adapted to harsher thermal conditions than S. carolitertii as a result of the different environmental conditions. We present a transcriptomic characterisation of these species' thermal stress responses. Through differential gene expression analysis of the recently available transcriptomes of these two endemic fish species, comprising 12 RNA-seq libraries from three tissues (skeletal muscle, liver and fins) of fish exposed to control (18 °C) and test (30 °C) conditions, we intend to lay the foundations for further studies on the effects of temperature given predicted climate changes. Results showed that S. carolitertii had more upregulated genes, many of which are involved in transcription regulation, whereas S. torgalensis had more downregulated genes, particularly those responsible for cell division and growth. However, both species displayed increased gene expression of many hsps genes, suggesting that they are able to deal with protein damage caused by heat, though with a greater response in S. torgalensis. Together, our results suggest that S. torgalensis may have an energy saving strategy during short periods of high temperatures, re-allocating resources from growth to stress response mechanisms. In contrast, S. carolitertii regulates its metabolism by increasing the expression of genes involved in transcription and promoting the stress response, probably to maintain homoeostasis. Additionally, we indicate a set of potential target genes for further studies that may be particularly suited to monitoring the responses of Cyprinidae to changing temperatures, particularly for species living in similar conditions in the Mediterranean Peninsulas.
Alves, MN, Fernandes AP, Salgueiro CA, Paquete CM.
2016.
Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens. BBA - Bioenergetics. 1857(1):7-13.
AbstractThe extracellular electron transfer metabolism of Geobacter sulfurreducens is sustained by several multiheme c-type cytochromes. One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type cytochromes. GSU1996 is composed by four similar triheme domains (A-D). The C-terminal half of the molecule encompasses the domains C and D, which are connected by a small linker and the N-terminal half of the protein contains two domains (A and B) that form one structural unit. It was proposed that this protein works as an electrically conductive device in Geobacter sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. In this work, a novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of GSU1996 for the first time, showing that a heme at the edge of the C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from physiological redox partners. This information contributes towards understanding how this new sub-class of cytochromes functions as nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms in Geobacter sulfurreducens.
Sharipova, AA, Aidarova SB, Bekturganova NE, Tleuova A, Schenderlein M, Lygina O, Lyubchik S, Miller R.
2016.
Triclosan as model system for the adsorption on recycled adsorbent materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 505:193-196.
AbstractThe adsorption of triclosan as model system was studied to qualify activated carbon sorbents recycled from gas masks (civilian gas mask GP5). The triclosan equilibrium concentration was measured spectrophotometrically, the morphology of the activated carbon characterized by scanning electron microscopy, and the amount of the adsorbed triclosan on the activated carbon quantified by a mass balance method. Experimental isotherms were fitted by Langmuir, Freundlich and Sips adsorption models. It was obtained that the contact time is a crucial sorption parameter that provides information on the optimum adsorption efficiency. It was shown that the maximum efficiency of GP5 (88%) is obtained after 10days of adsorption at a maximal concentration of triclosan and carbon loading 1mg/l. No significant adsorption efficiency differences were measured after 5 and 10days of adsorption. The non-linear Sips isotherm, a combined Freundlich–Langmuir model, provides suitable fitting results. The observed remarkable adsorption capacity of activated carbon (GP5) towards triclosan adsorption (∼85mg/g) makes it a viable solution for wastewater treatment.