Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Pavan, M, Rühle S, Ginsburg A, Keller DA, Barad H-N, Sberna PM, Nunes D, Martins R, Anderson AY, Zaban A, Fortunato E.  2015.  {TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis}, jan. Solar Energy Materials and Solar Cells. 132:549–556. AbstractWebsite

Here we present for the first time a TiO2/Cu2O all-oxide heterojunction solar cell entirely produced by spray pyrolysis onto fluorine doped tin oxide (FTO) covered glass substrates, using silver as a back contact. A combinatorial approach was chosen to investigate the impact of the TiO2 window layer and the Cu2O light absorber thicknesses. We observe an open circuit voltage up to 350mV and a short circuit current density which is strongly dependent of the Cu2O thickness, reaching a maximum of {\~{}}0.4mA/cm2. Optical investigation reveals that a thickness of 300nm spray pyrolysis deposited Cu2O is sufficient to absorb most photons with an energy above the symmetry allowed optical transition of 2.5eV, indicating that the low current densities are caused by strong recombination in the absorber that consists of small Cu2O grains.

Pereira, S, Gonçalves A, Correia N, Pinto J, Pereira LÍ, Martins R, Fortunato E.  2014.  {Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature}. Solar Energy Materials and Solar Cells. 120, Part:109–115. AbstractWebsite

In this work we report the role of thickness on electrochromic behavior of nickel oxide (NiO) films deposited by e-beam evaporation at room temperature on ITO-coated glass. The structure and morphology of films with thicknesses between 100 and 500 nm were analyzed and then correlated with electrochemical response and transmittance modulation when immersed in 0.5 M LiClO4–PC electrolyte. The NiO exhibits an anodic coloration, reaching for the thickest film a transmittance modulation of 66{%} between colored and bleached state, at 630 nm, with a color efficiency of 55 cm2 C−1. Very fast switch between states was obtained, where coloration and bleaching times are 3.6 s cm−2 and 1.4 s cm−2, respectively.

Pereira, L, Gaspar D, Guerin D, a Delattre, Fortunato E, Martins R.  2014.  {The influence of fibril composition and dimension on the performance of paper gated oxide transistors}. Nanotechnology. 25:94007., Number 9 AbstractWebsite

Paper electronics is a topic of great interest due the possibility of having low-cost, disposable and recyclable electronic devices. The final goal is to make paper itself an active part of such devices. In this work we present new approaches in the selection of tailored paper, aiming to use it simultaneously as substrate and dielectric in oxide based paper field effect transistors (FETs). From the work performed, it was observed that the gate leakage current in paper FETs can be reduced using a dense microfiber/nanofiber cellulose paper as the dielectric. Also, the stability of these devices against changes in relative humidity is improved. On other hand, if the pH of the microfiber/nanofiber cellulose pulp is modified by the addition of HCl, the saturation mobility of the devices increases up to 16 cm 2 V −1 s −1 , with an I ON / I OFF ratio close to 10 5 .

Pimentel, A, Nunes D, Duarte P, Rodrigues J, Costa FM, Monteiro T, Martins R, Fortunato E.  2014.  {Synthesis of Long ZnO Nanorods under Microwave Irradiation or Conventional Heating}. The Journal of Physical Chemistry C. 118:14629–14639., Number 26 AbstractWebsite

The present work reports the synthesis of zinc oxide (ZnO) nanostructures produced either under microwave irradiation using low cost domestic microwave equipment or by conventional heating, both under hydrothermal conditions. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, room/low temperature photoluminescence, and Raman spectroscopy have been used to investigate the structure, morphology, and optical properties of the produced ZnO nanorods. Identical structures with aspect ratio up to 13 have been achieved for both synthesis routes displaying similar final properties. The hexagonal wurtzite structure has been identified, and a red-orange emission has been detected in the presence of UV irradiation for all the conditions studied. Thermal stability of the as-prepared nanostructures has been evaluated through thermogravimetric measurements revealing an increase of superficial defects. The as-prepared ZnO nanorods were tested as UV sensors on paper substrate, which led to fast response (30 s) and rapid recovery (100 s) times, as well as sensitivity up to 10 indicating that these materials may have a high potential in low cost, disposable UV photodetector applications.

Pimentel, A, Ferreira S, Nunes D, Calmeiro T, Martins R, Fortunato E.  2016.  {Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study}. Materials. 9:299., Number 4 AbstractWebsite
n/a