Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Lejarazu-Larrañaga, A, Ortiz JM, Molina S, Pawlowski S, Galinha CF, Otero V, García-Calvo E, Velizarov S, Crespo JG.  2022.  Nitrate Removal by Donnan Dialysis and Anion-Exchange Membrane Bioreactor Using Upcycled End-of-Life Reverse Osmosis Membranes. Membranes. 12, Number 2 AbstractWebsite

This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment. Overall, this work validates the technical feasibility of using RO upcycled AEMs in DD and IEMB processes for nitrate removal. This membrane recycling concept might also find applications for the removal and/or recovery of other target negatively charged species.

2019
Antónia Nunes, M, Pawlowski S, Costa ASG, Alves RC, Oliveira BMPP, Velizarov S.  2019.  Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Science of The Total Environment. 652:40-47. AbstractWebsite

Olive pomace is a semi-solid paste resulting from the two-phase olive oil production, being the most significant waste generated by this agro-industry. Olive pomace is reported as an environmental hazard due to its high content in phenolic compounds (phytotoxic). Nevertheless, these compounds, when recovered, can have impactful actions in different human physiological conditions, namely, skin protection, dysfunction treatment or diseases prevention. Therefore, their recovery from olive pomace is crucial for environmental and economical sustainability, without forgetting the functional challenge. In a previous work, lipid and aqueous fractions of olive pomace were studied regarding its major bioactive compounds. The present research aims to describe an environmentally friendly integrated approach to extract and concentrate (by a pressure-driven membrane processing) the phytotoxic compounds of olive pomace. Three types of polymeric composite membranes (NF90, NF270 and BW30) were tested. The composition of the resulting streams (permeates and concentrates) were compared and the process efficiency assessed based on: (1) antioxidant activity and total phenolic and flavonoid contents; (2) inorganic elemental composition (by Inductively Coupled Plasma Atomic Emission Spectroscopy); (3) pH, conductivity and total organic carbon; and (4) permeate flux, membranes' apparent target solutes rejection and fouling index. The BW30 membrane presented the lowest fouling index and was the most effective for extracts concentration, with no phenolic compounds in the permeates, preventing completely the loss of such compounds.